sTATE OF NEW HAMPSHIRE

BEFORE THE

PUBLIC UTILITIES COMMISSION

AQUARION WATER COMPANY OF NEW HAMPSHIRE, INC.

 DOCKET NO. DW 20-184
PREFILED DIRECT TESTIMONY OF

DYLAN W. D'ASCENDIS, CRRA, CVA SCOTTMADDEN, INC.

ON BEHALF OF
AQUARION WATER COMPANY OF NEW HAMPSHIRE

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
A. WITNESS IDENTIFICATION 1
B. BACKGROUND AND QUALIFICATIONS 1
II. PURPOSE OF TESTIMONY 2
III. SUMMARY 3
IV. GENERAL PRINCIPLES 5
A. BUSINESS RISK 8
B. FINANCIAL RISK 11
V. AQUARION WATER COMPANY OF NEW HAMPSHIRE AND THE UTILITY PROXY GROUP 12
VI. CAPITAL STRUCTURE 14
VII. COMMON EQUITY COST RATE MODELS 15
A. DISCOUNTED CASH FLOW MODEL 16
B. THE RISK PREMIUM MODEL 18
C. THE CAPITAL ASSET PRICING MODEL 28
D. COMMON EQUITY COST RATES FOR A PROXY GROUP OF DOMESTIC, NON-PRICE REGULATED COMPANIES BASED ON THE DCF, RPM, AND CAPM 34
VIII. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENT 38
IX. ADJUSTMENTS TO THE COMMON EQUITY COST RATE 38
A. SIZE ADJUSTMENT 38
B. FLOTATION COST ADJUSTMENT 46
X. CONCLUSION OF COMMON EQUITY COST RATE 49

I. INTRODUCTION

A. WITNESS IDENTIFICATION

Q. Please state your name and business address.
A. My name is Dylan W. D'Ascendis. My business address is 3000 Atrium Way, Suite 241, Mount Laurel, NJ 08054.
Q. By whom are you employed and in what capacity?
A. I am a Director at ScottMadden, Inc.

B. BACKGROUND AND QUALIFICATIONS

Q. Please summarize your professional experience and educational background.
A. I have offered expert testimony on behalf of investor-owned utilities in over 20 state regulatory commissions in the United States, the Federal Energy Regulatory Commission, the Alberta Utility Commission, and one American Arbitration Association panel on issues including, but not limited to, common equity cost rate, rate of return, valuation, capital structure, class cost of service, and rate design.

On behalf of the American Gas Association ("AGA"), I calculate the AGA Gas Index, which serves as the benchmark against which the performance of the American Gas Index Fund ("AGIF") is measured on a monthly basis. The AGA Gas Index and AGIF are a market capitalization weighted index and mutual fund, respectively, comprised of the common stocks of the publicly traded corporate members of the AGA.

I am a member of the Society of Utility and Regulatory Financial Analysts ("SURFA"). In 2011, I was awarded the professional designation "Certified Rate of Return Analyst" by SURFA, which is based on education, experience, and the successful completion of a comprehensive written examination.

I am also a member of the National Association of Certified Valuation Analysts ("NACVA") and was awarded the professional designation "Certified Valuation Analyst" by the NACVA in 2015.

I am a graduate of the University of Pennsylvania, where I received a Bachelor of Arts degree in Economic History. I have also received a Master of Business Administration with high honors and concentrations in Finance and International Business from Rutgers University.

The details of my educational background and expert witness appearances are included in Appendix A.

II. PURPOSE OF TESTIMONY

Q. What is the purpose of your testimony in this proceeding?
A. The purpose of my testimony is to present evidence on behalf of Aquarion Water Company of New Hampshire, Inc. ("AWNH" or the "Company") about the appropriate capital structure and corresponding cost rates the Company should be given the opportunity to earn on its jurisdictional rate base.
Q. Have you prepared Attachments in support of your recommendation?
A. Yes. Attachments DWD-1 through DWD-10 have been prepared by me or under my direct supervision.
Q. What is your recommended cost of capital for AWNH?
A. I recommend the New Hampshire Public Utilities Commission (the "Commission") authorize the Company the opportunity to earn an overall rate of return of 8.15% based on a test year ending December 31, 2019. The ratemaking capital structure consists of 43.85% long-term debt at an embedded cost rate of 6.14%, 3.78\% short-term debt at an embedded cost rate of 2.42\%, 0.01\% preferred equity at a 6.00% cost rate and 52.36% common equity at my recommended common equity cost rate of 10.25%. The overall rate of return is summarized on page 1 of Attachment DWD-1 and in Table 1 below:

Table 1: Summary of Overall Rate of Return

| Type of Capital | $\underline{\text { Ratios }}$ | | Cost rate |
| :---: | ---: | ---: | :---: |\quad Weighted Cost Rate

III. SUMMARY

Q. Please summarize your recommended common equity cost rate.
A. My recommended common equity cost rate of 10.25% is summarized on page 2 of Attachment DWD-1. I have assessed the market-based common equity cost rates of companies of relatively similar, but not necessarily identical, risk to AWNH. Using companies of relatively comparable risk as proxies is consistent with the principles of fair rate of return established in the Hope ${ }^{1}$ and $B_{l u e f i e l d ~}{ }^{2}$ cases. No proxy group can be identical in risk to any single company, so there must be an evaluation of relative risk between the company and the proxy group to see if it is appropriate to make adjustments to the proxy group's indicated rate of return.

Federal Power Commission v. Hope Natural Gas Co., 320 U.S. 591 (1944).
Bluefield Water Works Improvement Co. v. Public Serv. Comm'n, 262 U.S. 679 (1922). ("Bluefield")

My recommendation results from the application of several cost of common equity models, specifically the Discounted Cash Flow ("DCF") model, the Risk Premium Model ("RPM"), and the Capital Asset Pricing Model ("CAPM"), to the market data of a proxy group of seven water companies ("Utility Proxy Group") whose selection criteria will be discussed below. In addition, I also applied the DCF, RPM, and CAPM to a proxy group of domestic, non-price regulated companies comparable in total risk to the Utility Proxy Group ("NonPrice Regulated Proxy Group").

The results derived from each are as follows:

Table 2: Summary of Common Equity Cost Rate
\(\left.$$
\begin{array}{lc} & \begin{array}{c}\text { Utility Proxy } \\
\text { Group }\end{array} \\
\text { Discounted Cash Flow Model } & 9.09 \%\end{array}
$$ \begin{array}{l}Risk Premium Model

Capital Asset Pricing Model

Cost of Equity Models Applied to

Comparable Risk, Non-Price

Regulated Companies\end{array}\right] 10.56 \%\)| Range of Model Results |
| :--- |
| Size Adjustment |
| Flotation Cost Adjustment |
| Indicated Range of Common Equity |
| Cost Rates After Adjustments |
| Recommended Common Equity |
| Cost Rate After Adjustments |

After analyzing the indicated common equity cost rates derived through these models, the indicated range of common equity cost rates produced by the models are between 9.09\% and 10.87\%, which are applicable to the Utility Proxy

Group. In view of these model results, it is clear that the DCF model is a low side outlier when compared to the results of the other models.

The indicated range of common equity cost rates was then adjusted upward by 1.00% and 0.04% to reflect AWNH's smaller relative size and flotation costs, respectively. These adjustments result in a Company-specific range of common equity cost rates between 10.13% and 11.91%. From this range of results, I recommend the Commission consider a common equity cost rate of 10.25% for use in setting rates for the Company.

IV. GENERAL PRINCIPLES

Q. What general principles have you considered in arriving at your recommended common equity cost rate of $\mathbf{1 0 . 2 5 \%}$?
A. In unregulated industries, the competition of the marketplace is the principal determinant of the price of products or services. For regulated public utilities, regulation must act as a substitute for marketplace competition. Assuring that the utility can fulfill its obligations to the public, while providing safe and reliable service at all times, requires a level of earnings sufficient to maintain the integrity of presently invested capital. Sufficient earnings also permit the attraction of needed new capital at a reasonable cost, for which the utility must compete with other firms of comparable risk, consistent with the fair rate of return standards established by the U.S. Supreme Court in the previously cited Hope and Bluefield decisions. Consequently, marketplace data must be relied on in assessing a common equity cost rate appropriate for ratemaking purposes. Just as the use of the market data for the proxy group adds reliability to the informed expert's judgment used in arriving at a recommended common equity cost rate, the use of
multiple generally accepted common equity cost rate models also adds reliability and accuracy when arriving at a recommended common equity cost rate.

Q. Can you please provide some examples from the financial literature which support the use of multiple cost of common equity models in determining the investor-required return?

A. Yes. In one example, Morin states:

Each methodology requires the exercise of considerable judgment on the reasonableness of the assumptions underlying the methodology and on the reasonableness of the proxies used to validate a theory. The inability of the DCF model to account for changes in relative market valuation, discussed below, is a vivid example of the potential shortcomings of the DCF model when applied to a given company. Similarly, the inability of the CAPM to account for variables that affect security returns other than beta tarnishes its use.

No one individual method provides the necessary level of precision for determining a fair return, but each method provides useful evidence to facilitate the exercise of an informed judgment. Reliance on any single method or preset formula is inappropriate when dealing with investor expectations because of possible measurement difficulties and vagaries in individual companies' market data. (emphasis added)

The financial literature supports the use of multiple methods. Professor Eugene Brigham, a widely respected scholar and finance academician, asserts ${ }^{\text {(footnote omitted): }}$

Three methods typically are used: (1) the Capital Asset Pricing Model (CAPM), (2) the discounted cash flow (DCF) method, and (3) the bond-yield-plus-riskpremium approach. These methods are not mutually exclusive - no method dominates the others, and all are subject to error when used in practice. Therefore, when faced with the task of estimating a company's cost of equity, we generally use all three methods and then choose among them on the basis of our confidence in the data used for each in the specific case at hand. (emphasis added)

Another prominent finance scholar, Professor Stewart Myers, in an early pioneering article on regulatory finance, stated ${ }^{\text {(footnote omitted): }}$

> Use more than one model when you can. Because estimating the opportunity cost of capital is difficult, only a fool throws away useful information. That means you should not use any one model or measure mechanically and exclusively. Beta is helpful as one tool in a kit, to be used in parallel with DCF models or other techniques for interpreting capital market data. (emphasis added)

Reliance on multiple tests recognizes that no single methodology produces a precise definitive estimate of the cost of equity. As stated in Bonbright, Danielsen, and Kamerschen (1988), 'no single or group test or technique is conclusive.' Only a fool discards relevant evidence. (italics in original) (emphasis added)

While it is certainly appropriate to use the DCF methodology to estimate the cost of equity, there is no proof that the DCF produces a more accurate estimate of the cost of equity than other methodologies. Sole reliance on the DCF model ignores the capital market evidence and financial theory formalized in the CAPM and other risk premium methods. The DCF model is one of many tools to be employed in conjunction with other methods to estimate the cost of equity. It is not a superior methodology that supplants other financial theory and market evidence. The broad usage of the DCF methodology in regulatory proceedings in contrast to its virtual disappearance in academic textbooks does not make it superior to other methods. The same is true of the Risk Premium and CAPM methodologies. (emphasis added) ${ }^{3}$

Finally, Brigham and Gapenski note:
In practical work, it is often best to use all three methods - CAPM, bond yield plus risk premium, and DCF - and then apply judgment when the methods produce different results. People experienced in estimating equity capital costs recognize that both careful analysis and some very fine judgments are required. It would be nice to pretend that these judgments are unnecessary and to specify an easy, precise way of determining the exact cost of equity capital.

[^0]Unfortunately, this is not possible. Finance is in large part a matter of judgment, and we simply must face this fact. (italics in original) ${ }^{4}$

In the academic literature cited above, three methods are consistently mentioned: the DCF, CAPM, and the RPM, all of which I used in my analyses.

A. BUSINESS RISK

Q. Please define business risk and explain why it is important to the determination of a fair rate of return.
A. Business risk is the riskiness of a company's common stock without the use of debt and/or preferred capital. Examples of such general business risks faced by all utilities (i.e., electric, natural gas distribution, and water) include size, the quality of management, the regulatory environment in which utilities operate, customer mix and concentration of customers, service territory growth, and capital intensity. All of these have a direct bearing on earnings.

Consistent with the basic financial principle of risk and return, business risk is important to the determination of a fair rate of return, because the higher the level of risk, the higher the rate of return investors demand.

Q. What business risks do the water and wastewater industries face in general?

A. Water and wastewater utilities have an ever-increasing responsibility to be stewards of the environment from which water supplies are drawn in order to preserve and protect essential natural resources of the United States. This increased environmental stewardship is a direct result of compliance with the Safe Water Drinking Act, as well as a response to continuous monitoring by the

[^1]Environmental Protection Agency ("EPA") and state and local governments, of the water supply for potential contaminants and their resultant regulations. This, plus aging infrastructure, necessitate additional capital investment in the distribution and treatment of water, exacerbating the pressure on free cash flows arising from increased capital expenditures for infrastructure repair and replacement. The significant amount of capital investment and, hence, high capital intensity, is a major risk factor for the water and wastewater utility industry.

Value Line Investment Survey ("Value Line") observes the following about the water utility industry:

After decades of under investment, American utilities are now spending heavily to modernize and upgrade aging pipelines and wastewater facilities. Funding these projects requires significant amounts of capital, much of it coming from external financing.

Utilities understand that they are being granted a monopoly of a vital resource and must provide good service. The regulatory climate is much more favorable in the water industry compared to that of other the electric utility industry. ${ }^{5}$

The water and wastewater industry also experience low depreciation rates. Depreciation rates are one of the principal sources of internal cash flows for all utilities (through a utility's depreciation expense), and are vital for a company to fund ongoing replacements and repairs of water and wastewater systems. Water / wastewater utility assets have long lives, and therefore have

[^2] long capital recovery periods. As such, they face greater risk due to inflation, which results in a higher replacement cost per dollar of net plant.

Substantial capital expenditures, as noted by Value Line, will require significant financing. The three sources of financing typically used are debt, equity (common and preferred), and cash flow. All three are intricately linked to the opportunity to earn a sufficient rate of return as well as the ability to achieve that return. Consistent with Hope and Bluefield, the return must be sufficient to maintain credit quality as well as enable the attraction of necessary new capital, be it debt or equity capital. If unable to raise debt or equity capital, the utility must turn to either retained earnings or free cash flow, ${ }^{6}$ both of which are directly linked to earning a sufficient rate of return. The level of free cash flow represents a utility's ability to meet the needs of its debt and equity holders. If either retained earnings or free cash flow is inadequate, it will be nearly impossible for the utility to attract the needed capital for new infrastructure investment necessary to ensure quality service to its customers. An insufficient rate of return can be financially devastating for utilities as well as a public safety issue for their customers.

The water and wastewater utility industry's high degree of capital intensity and low depreciation rates, coupled with the need for substantial infrastructure capital spending, require regulatory support in the form of adequate and timely rate relief, and in particular, a sufficient authorized return on common equity, so that the industry can successfully meet the challenges it faces.

B. FINANCIAL RISK

Q. Please define financial risk and explain why it is important to the determination of a fair rate of return.
A. Financial risk is the additional risk created by the introduction of debt and preferred stock into the capital structure. The higher the proportion of debt and preferred stock in the capital structure, the higher the financial risk (i.e. likelihood of default). Therefore, consistent with the basic financial principle of risk and return, investors demand a higher common equity return as compensation for bearing higher default risk.
Q. Can bond and credit ratings be a proxy for the combined business and financial risk (i.e., investment risk of an enterprise)?
A. Yes, similar bond ratings/issuer credit ratings reflect, and are representative of, similar combined business and financial risks (i.e., total risk) faced by bond investors. ${ }^{7}$ Although specific business or financial risks may differ between companies, the same bond/credit rating indicates that the combined risks are roughly similar, albeit not necessarily equal, as the purpose of the bond/credit rating process is to assess credit quality or credit risk, and not common equity risk.

[^3]Q. That being said, do rating agencies reflect company size in their bond ratings?
A. No. Neither S\&P nor Moody's have minimum company size requirements for any given rating level. This means, all else equal, a relative size analysis needs to be conducted for companies with similar bond ratings.

V. AQUARION WATER COMPANY OF NEW HAMPSHIRE AND THE UTILITY PROXY GROUP

Q. Are you familiar with the operations of AWNH?
A. Yes. AWNH's operations serve approximately 9,541 customers in three communities within Rockingham County in New Hampshire. As a wholly-owned subsidiary of Aquarion Water Company, which is a wholly-owned subsidiary of Eversource Energy, AWNH is not publicly-traded.

Q. Please explain how you chose your Utility Proxy Group.

A. The basis of selection for the Utility Proxy Group was to select those companies which meet the following criteria:
(i) They are included in the Water Utility Group of Value Line's Standard Edition (October 9, 2020);
(ii) They have 70% or greater of 2019 total operating income and 70% or greater of 2019 total assets attributable to regulated water operations;
(iii) At the time of preparation of this testimony, they had not publicly announced that they were involved in any major merger or acquisition activity (i.e., one publicly-traded utility merging with or acquiring another);
(iv) They have not cut or omitted their common dividends during the five years ending 2019 or through the time of the preparation of this testimony;
(v) They have Value Line and Bloomberg Professional Services ("Bloomberg") adjusted betas;
(vi) They have a positive Value Line five-year dividends per share ("DPS") growth rate projection; and
(vii) They have Value Line, Zacks, Yahoo! Finance, or Bloomberg consensus five-year earnings per share ("EPS") growth rate projections.

The following seven companies met these criteria: American States Water Co., American Water Works Co., Inc., California Water Service Group, Essential Utilities, Inc., Middlesex Water Co., SJW Corp., and York Water Co.

Q. Please describe Attachment DWD-2, page 1.

A. Page 1 of Attachment DWD-2 contains comparative capitalization and financial statistics for the Utility Proxy Group identified above for the years 2015 to 2019. During the five-year period ending 2019, the historically achieved average earnings rate on book common equity for the group averaged 10.45%. The average common equity ratio based on total capital (including short-term debt) was 51.09%, and the average dividend payout ratio was 60.34%.

Total debt to earnings before interest, taxes, depreciation, and amortization for the years 2015 to 2019 ranges between 3.41 and 5.54 , with an average of 4.00 . Funds from operations to total debt range from 14.49% to 25.81%, with an average of 21.64%.

VI. CAPITAL STRUCTURE

Q. What capital structure ratios do you recommend be employed in developing an overall fair rate of return appropriate for the Company?
A. I recommend the use of the actual test year capital structure of AWNH at December 31, 2019, which consists of 43.85% long-term debt, 3.78% short-term debt, 0.01% preferred equity, and 52.36% common equity as shown on page 1 of Attachment DWD-1.
Q. How does your proposed ratemaking common equity ratio of $\mathbf{5 2 . 3 6 \%}$ for AWNH compare with the equity ratios maintained by the companies in your Utility Proxy Group?
A. My proposed ratemaking common equity ratio of 52.36% for AWNH is reasonable and consistent with the range of common equity ratios maintained, on average, by the companies in the Utility Proxy Group on which I base my recommended common equity cost rate. As shown on page 2 of Attachment DWD-2, the common equity ratios of the Utility Proxy Group range from 38.48\% to 57.05% in 2019. In my opinion, AWNH's actual capital structure consisting of 43.85\% long-term debt, 3.78\% short-term debt, 0.01% preferred equity, and 52.36% common equity is appropriate. This is how AWNH is actually financed, and is comparable to the range of capital structure ratios (based on total capital) maintained by the companies in the Utility Proxy Group, on whose market data I base my recommended common equity cost rate.
Q. What cost rates are most appropriate for use in a cost of capital determination for AWNH?
A. The Company's actual long- and short-term debt cost rates at December 31, 2019 of 6.14% and 2.42%, respectively, are reasonable and appropriate for use in the calculation of the overall cost of capital in this proceeding. Likewise, the actual preferred equity cost rate of 6.00% should be approved by the Commission.

VII. COMMON EQUITY COST RATE MODELS

Q. Are your cost of common equity models market-based models?
A. Yes. The DCF model is market-based because market prices are used in developing the dividend yield component of the model. The RPM is marketbased because the bond ratings and expected bond yields used in the application of the RPM reflect the market's assessment of bond/credit risk. In addition, the use of beta coefficients (β) to determine the equity risk premium reflects the market's assessment of market/systematic risk, since beta coefficients are derived from regression analyses of market prices. The Predictive Risk Premium Model ("PRPM") uses monthly market returns in addition to expectations of the risk-free rate. The CAPM is market-based for many of the same reasons that the RPM is market-based (i.e., the use of expected bond yields and beta coefficients). Selection of the comparable risk non-price regulated companies is market-based because it is based on statistics which result from regression analyses of market prices and reflect the market's assessment of total risk.

A. DISCOUNTED CASH FLOW MODEL

Q. What is the theoretical basis of the DCF model?
A. The theory underlying the DCF model is that the present value of an expected future stream of net cash flows during the investment holding period can be determined by discounting those cash flows at the cost of capital, or the investors' capitalization rate. DCF theory indicates that an investor buys a stock for an expected total return rate, which is derived from cash flows received in the form of dividends plus appreciation in market price (the expected growth rate). Mathematically, the dividend yield on market price plus a growth rate equals the capitalization rate, i.e., the total common equity return rate expected by investors.
Q. Which version of the DCF model did you use?
A. I used the single-stage constant growth DCF model.
Q. Please describe the dividend yield you used in your application of the DCF model.
A. The unadjusted dividend yields are based on the proxy companies' dividends as of October 16, 2020, divided by the average of closing market prices for the 60 trading days ending October 16, 2020. ${ }^{8}$
Q. Please explain your adjustment to the dividend yield.
A. Because dividends are paid periodically (quarterly), as opposed to continuously (daily), an adjustment must be made to the dividend yield. This is often referred to as the discrete, or the Gordon Periodic, version of the DCF model.

DCF theory calls for the use of the full growth rate, or D_{1}, in calculating the dividend yield component of the model. Since the various companies in the

[^4]Utility Proxy Group increase their quarterly dividend at various times during the year, a reasonable assumption is to reflect one-half the annual dividend growth rate in the dividend yield component, or $\mathrm{D}_{1 / 2}$. Because the dividend should be representative of the next 12-month period, my adjustment is a conservative approach that does not overstate the dividend yield. Therefore, the actual average dividend yields in Column 1 on page 1 of Attachment DWD-3 have been adjusted upward to reflect one-half the average projected growth rate shown in Column 6.

Q. Please explain the basis of the growth rates you applied to the Utility Proxy Group in your DCF model.

A. Investors with more limited resources than institutional investors are likely to rely on widely available financial information services, such as Value Line, Zacks, Yahoo! Finance, and Bloomberg. Investors realize that analysts have significant insight into the dynamics of the industries and individual companies they analyze, as well as companies' abilities to effectively manage the effects of changing laws and regulations, and ever-changing economic and market conditions. For these reasons, I used analysts' five-year forecasts of EPS growth in my DCF analysis.

Over the long run, there can be no growth in DPS without growth in EPS. Security analysts' earnings expectations have a more significant influence on market prices than dividend expectations. Thus, the use of earnings growth rates in a DCF analysis provides a better match between investors' market price appreciation expectations and the growth rate component of the DCF.

Q. Please summarize the DCF model results.

A. As shown on page 1 of Attachment DWD-3, the mean result of the application of the single-stage DCF model is 9.19%, the median result is 8.99%, and the average of the two is 9.09% for the Utility Proxy Group. In arriving at a conclusion for the DCF-indicated common equity cost rate for the Utility Proxy Group, I have relied on an average of the mean and the median results of the DCF. This approach takes into consideration all the proxy companies' results, while mitigating the high and low outliers of those individual results.

B. THE RISK PREMIUM MODEL

Q. Please describe the theoretical basis of the RPM.

A. The RPM is based on the fundamental financial principle of risk and return, namely, that investors require greater returns for bearing greater risk. The RPM recognizes that common equity capital has greater investment risk than debt capital, as common equity shareholders are behind debt holders in any claim on a company's assets and earnings. As a result, investors require higher returns from common stocks than from investment in bonds, to compensate them for bearing the additional risk.

While it is possible to directly observe bond returns and yields, investors' required common equity return cannot be directly determined or observed. According to RPM theory, one can estimate a common equity risk premium over bonds (either historically or prospectively), and use that premium to derive a cost rate of common equity. The cost of common equity equals the expected cost rate for long-term debt capital plus a risk premium over that cost rate to compensate common shareholders for the added risk of being unsecured and
last-in-line for any claim on the corporation's assets and earnings in the event of a liquidation.
Q. Please explain how you derived your indicated cost of common equity based on the RPM.
A. I relied on the results of the application of two risk premium methods. The first method is the PRPM, while the second method is a risk premium model using a total market approach.

Q. Please explain the PRPM.

A. The PRPM, published in the Journal of Regulatory Economics and The Electricity Journal 9, was developed from the work of Robert F. Engle who shared the Nobel Prize in Economics in 2003 "for methods of analyzing economic time series with time-varying volatility ("ARCH")". ${ }^{10}$ Engle found that volatility changes over time and is related from one period to the next, especially in financial markets. Engle discovered that the volatility in prices and returns clusters over time and is therefore highly predictable and can be used to predict future levels of risk and risk premiums.

The PRPM estimates the risk / return relationship directly, as the predicted equity risk premium is generated by the prediction of volatility or risk. The PRPM is not based on an estimate of investor behavior, but rather on the evaluation of the results of that behavior (i.e., the variance of historical equity risk premiums).

[^5]The inputs to the model are the historical returns on the common shares of each company in the Utility Proxy Group minus the historical monthly yield on long-term U.S. Treasury securities through September 2020. Using a generalized form of ARCH, known as GARCH, I calculated each Utility Proxy Group company's projected equity risk premium using Eviews ${ }^{\ominus}$ statistical software. When the GARCH Model is applied to the historical return data, it produces a predicted GARCH variance series ${ }^{11}$ and a GARCH coefficient ${ }^{12}$. Multiplying the predicted monthly variance by the GARCH coefficient, then annualizing it^{13}, produces the predicted annual equity risk premium. I then added the forecasted 30 -year U.S. Treasury Bond yield, $2.11 \%{ }^{14}$, to each company's PRPM-derived equity risk premium to arrive at an indicated cost of common equity. The 30-year Treasury yield is a consensus forecast derived from the Blue Chip Financial Forecasts ("Blue Chip") ${ }^{15}$. The mean PRPM indicated common equity cost rate for the Utility Proxy Group is 11.20%, the median is 10.43%, and the average of the two is 10.82%. Consistent with my reliance on the average of the median and mean results of the DCF, I relied on the average of the mean and median results of the Utility Proxy Group PRPM to calculate a cost of common equity rate of 10.82%.

Q. Please explain the total market approach RPM.

A. The total market approach RPM adds a prospective public utility bond yield to an average of: 1) an equity risk premium that is derived from a beta-adjusted total

[^6]market equity risk premium, and 2) an equity risk premium based on the S\&P Utilities Index.

Q. Please explain the basis of the expected bond yield of 3.56% applicable to the Utility Proxy Group.

A. The first step in the total market approach RPM analysis is to determine the expected bond yield. Because both ratemaking and the cost of capital, including common equity cost rate, are prospective in nature, a prospective yield on similarly-rated long-term debt is essential. I rely on a consensus forecast of about 50 economists of the expected yield on Aaa-rated corporate bonds for the six calendar quarters ending with the first calendar quarter of 2022 and the longterm projections for 2022 to 2026, and 2027 to 2031 from Blue Chip. As shown on line No. 1 of page 3 of Attachment DWD-4, the average expected yield on Moody's Aaa-rated corporate bonds is 2.96%. In order to derive an expected yield on A2-rated public utility bonds, I make an upward adjustment of 0.54%, which represents a recent spread between Aaa-rated corporate bonds and A2rated public utility bonds, in order to adjust the expected Aaa-rated corporate bond yield to an equivalent Moody's A2-rated public utility bond. ${ }^{16}$ Adding that recent 0.54% spread to the expected Aaa-rated corporate bond yield of 2.96% results in an expected A2 public utility bond of 3.50%.

Since the Utility Proxy Group's average Moody's long-term issuer rating is A2/A3, another adjustment to the expected A2-rated public utility bond yield is needed to reflect the difference in bond ratings. An upward adjustment of 0.06\%, which represents one-sixth of a recent spread between A2- and Baa2-rated

[^7]public utility bond yields, is necessary to make the A2-rated prospective bond yield applicable to an A2/A3-rated public utility bond. ${ }^{17}$ Adding the 0.06% to the 3.50% prospective A2-rated public utility bond yield results in a 3.56% expected bond yield for the Utility Proxy Group.
Q. Please explain how the beta-derived equity risk premium is determined.
A. The components of the beta-derived risk premium model are: 1) an expected market equity risk premium over corporate bonds, and 2) the beta coefficient. The derivation of the beta-derived equity risk premium that I applied to the Utility Proxy Group is shown on lines 1 through 9 of page 8 of Attachment DWD-4. The total beta-derived equity risk premium I applied was based on an average of: 1) Ibbotson-based equity risk premiums; 2) Value Line-based equity risk premiums; and 3) Bloomberg-based equity risk premium. Each of these is described in turn.
Q. How did you derive a market equity risk premium based on long-term historical data?
A. To derive a historical market equity risk premium, I used the most recent holding period returns for the large company common stocks from the Stocks, Bonds, Bills, and Inflation ("SBBI") 2020 Yearbook ("SBBI - 2020") ${ }^{18}$ less the average historical yield on Moody's Aaa/Aa-rated corporate bonds for the period 1928 to 2019. The use of holding period returns over a very long period of time is appropriate because it is consistent with the long-term investment horizon presumed by investing in a going concern, i.e., a company expected to operate in perpetuity.

SBBI's long-term arithmetic mean monthly total return rate on large company common stocks was 11.83% and the long-term arithmetic mean monthly yield on Moody's Aaa/Aa-rated corporate bonds was $6.05 \% .^{19}$ As shown on line 1 of page 8 of Attachment DWD-4, subtracting the mean monthly bond yield from the total return on large company stocks results in a long-term historical equity risk premium of 5.78%.

I used the arithmetic mean monthly total return rates for the large company stocks and yields (income returns) for the Moody's Aaa/Aa corporate bonds, because they are appropriate for the purpose of estimating the cost of capital as noted in $\underline{\mathrm{SBBI}-2020 .}{ }^{20}$ The use of the arithmetic mean return rates and yields is appropriate because historical total returns and equity risk premiums provide insight into the variance and standard deviation of returns needed by investors in estimating future risk when making a current investment. If investors relied on the geometric mean of historical equity risk premiums, they would have no insight into the potential variance of future returns because the geometric mean relates the change over many periods to a constant rate of change, thereby obviating the year-to-year fluctuations, or variance, which is critical to risk analysis.
Q. Please explain the derivation of the regression-based market equity risk premium.
A. To derive the regression analysis-derived market equity risk premium of 9.42%, shown on line 2 of page 8 of Attachment DWD-4, I used the same monthly annualized total returns on large company common stocks relative to the monthly

[^8]annualized yields on Moody's Aaa/Aa-rated corporate bonds as mentioned above. The relationship between interest rates and the market equity risk premium was modeled using the observed monthly market equity risk premium as the dependent variable, and the monthly yield on Moody's Aaa/Aa-rated corporate bonds as the independent variable. I used a linear Ordinary Least Squares ("OLS") regression, in which the market equity risk premium is expressed as a function of the Moody's Aaa/Aa-rated corporate bonds yield:
$$
R P=\alpha+\beta\left(R_{\text {Aaa/Aa }}\right)
$$

Q. Please explain the derivation of a PRPM equity risk premium.

A. I used the same PRPM approach described previously to develop another equity risk premium estimate. The inputs to the model are the historical monthly returns on large company common stocks minus the monthly yields on Aaa/Aa-rated corporate bonds during the period from January 1928 through September 2020. ${ }^{21}$ Using the previously discussed generalized form of ARCH, known as GARCH, the projected equity risk premium is determined using Eviews ${ }^{\circledR}$ statistical software. The resulting PRPM predicted market equity risk premium is $9.54 \% .{ }^{22}$
Q. Please explain the derivation of a projected equity risk premium based on Value Line data for your RPM analysis.
A. As noted previously, because both ratemaking and the cost of capital are prospective, a prospective market equity risk premium is needed. The derivation of the forecasted or prospective market equity risk premium can be found in Note 4 on page 9 of Attachment DWD-4. Consistent with my calculation of the

21 Data from January 1928-December 2019 is from SBBI - 2019. Data from January - September 2020 is from Bloomberg Professional Services. Shown on Line No. 3 on page 8 of Attachment DWD-4.
dividend yield component in my DCF analysis, this prospective market equity risk premium is derived from an average of the three- to five-year median market price appreciation potential by Value Line for the 13 weeks ending October 16, 2020, plus an average of the median estimated dividend yield for the common stocks of the 1,700 firms covered in Value Line's Standard Edition. ${ }^{23}$

The average median expected price appreciation is 54%, which translates to an 11.40% annual appreciation, and when added to the average of Value Line's median expected dividend yields of 2.29%, equates to a forecasted annual total return rate on the market of 13.69%. The forecasted Aaa-rated bond yield of 2.96% is deducted from the total market return of 13.69%, resulting in an equity risk premium of 10.73%, shown on page 8 , line 4 of Attachment DWD-4.
Q. Please explain the derivation of an equity risk premium based on the S\&P 500 companies.
A. Using data from Value Line, I calculated an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation. The expected total return for the S\&P 500 is 13.95%. Subtracting the prospective yield on Aaa-rated Corporate bonds of 2.96% results in a 10.99% projected equity risk premium.
Q. Please explain the derivation of an equity risk premium based on Bloomberg data.
A. Using data from Bloomberg, I calculated an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation, identical to the method described above. The expected total

23 As explained in detail in page 2, Note 1 of Attachment DWD-5.
return for the S\&P 500 is 13.70%. Subtracting the prospective yield on Aaa-rated Corporate bonds of 2.96% results in a 10.74% projected equity risk premium.

Q. What is your conclusion of a beta-derived equity risk premium for use in your RPM analysis?

A. I gave equal weight to the six equity risk premiums in arriving at my conclusion of 9.53%. ${ }^{24}$

After calculating the average market equity risk premium of 9.53%, I adjusted it by beta to account for the risk of the Utility Proxy Group. As discussed below, the beta coefficient is a meaningful measure of prospective relative risk to the market as a whole and is a logical means by which to allocate a company's, or proxy group's, share of the market's total equity risk premium relative to corporate bond yields. As shown on page 1 of Attachment DWD-5, the average of the mean and median beta coefficient for the Utility Proxy Group is 0.81 . Multiplying the beta coefficient of the Utility Proxy Group of 0.81 by the market equity risk premium of 9.53% results in a beta-adjusted equity risk premium of 7.72% for the Utility Proxy Group.
Q. How did you derive the equity risk premium based on the S\&P Utility Index and Moody's A-rated public utility bonds?
A. I estimated three equity risk premiums based on S\&P Utility Index holding returns, and two equity risk premiums based on the expected returns of the S\&P Utilities Index, using Value Line and Bloomberg data, respectively. Turning first to the S\&P Utility Index holding period returns, I derived a long-term monthly arithmetic mean equity risk premium between the S\&P Utility Index total returns

[^9] of 10.74% and monthly A-rated public utility bond yields of 6.53% from 1928 to 2019, to arrive at an equity risk premium of $4.21 \% .{ }^{25}$ I then used the same historical data to derive an equity risk premium of 6.88% based on a regression of the monthly equity risk premiums. The final S\&P Utility Index holding period equity risk premium involved applying the PRPM using the historical monthly equity risk premiums from January 1928 to September 2020 to arrive at a PRPMderived equity risk premium of 5.53% for the S\&P Utility Index.

I then derived expected total returns on the S\&P Utilities Index of 10.18\% and 8.94% using data from Value Line and Bloomberg, respectively, and subtracted the prospective A2-rated public utility bond yield $\left(3.50 \%{ }^{26}\right)$, which results in risk premiums of 6.68% and 5.44%, respectively. As with the market equity risk premiums, I averaged each risk premium to arrive at my utility-specific equity risk premium of 5.75%.
Q. What is your conclusion of an equity risk premium for use in your total market approach RPM analysis?
A. The equity risk premium I applied to the Utility Proxy Group is 6.74%, which is the average of the beta-derived and the S\&P utility equity risk premiums of 7.72% and 5.75%, respectively. ${ }^{27}$

[^10]Q. What is the indicated RPM common equity cost rate based on the total market approach?
A. As shown on line No. 7 of Attachment DWD-4, page 3, I calculated a common equity cost rate of 10.30% for the Utility Proxy Group based on the total market approach of the RPM.
Q. What are the results of your application of the PRPM and the total market approach RPM?
A. As shown on page 1 of Attachment DWD-4, the indicated RPM-derived common equity cost rate is 10.56%, which gives equal weight to the PRPM (10.82\%) and the adjusted market approach results (10.30\%).

C. THE CAPITAL ASSET PRICING MODEL

Q. Please explain the theoretical basis of the CAPM.

A. CAPM theory defines risk as the co-variability of a security's returns with the market's returns as measured by the beta coefficient (β). A beta coefficient less than 1.0 indicates lower variability than the market as a whole, while a beta coefficient greater than 1.0 indicates greater variability than the market.

The CAPM assumes that all other risk (i.e., all non-market or unsystematic risk) can be eliminated through diversification. The risk that cannot be eliminated through diversification is called market, or systematic, risk. In addition, the CAPM presumes that investors require compensation only for systematic risk, which is the result of macroeconomic and other events that affect the returns on all assets. The model is applied by adding a risk-free rate of return to a market risk premium, which is adjusted proportionately to reflect the systematic risk of
the individual security relative to the total market as measured by the beta coefficient. The traditional CAPM model is expressed as:

Where: \quad\begin{tabular}{ll}
R_{s} \& $=R_{f}+\beta\left(R_{m}-R_{f}\right)$

R_{s} \& $=$ Return rate on the common stock;

R_{f} \& $=$ Risk-free rate of return;

R_{m} \& $=$ Return rate on the market as a whole; and

β \& $=$| Adjusted beta coefficient (volatility of the |
| :--- |
| security relative to the market as a whole). |

\end{tabular}

Numerous tests of the CAPM have measured the extent to which security returns and beta coefficients are related as predicted by the CAPM, confirming its validity. The empirical CAPM ("ECAPM") reflects the reality that while the results of these tests support the notion that the beta coefficient is related to security returns, the empirical Security Market Line ("SML") described by the CAPM formula is not as steeply sloped as the predicted SML. ${ }^{28}$ The ECAPM reflects this empirical reality. Fama and French clearly state regarding Figure 2, below, that "[t]he returns on the low beta portfolios are too high, and the returns on the high beta portfolios are too low." ${ }^{29}$

[^11]Figure 2 http://pubs.aeaweb.org/doi/pdfplus/10.1257/0895330042162430
Average Annualized Monthly Return versus Beta for Value Weight Portfolios Formed on Prior Beta, 1928-2003

In addition, Morin observes that while the results of these tests support the notion that beta is related to security returns, the empirical SML described by the CAPM formula is not as steeply sloped as the predicted SML. Morin states:

With few exceptions, the empirical studies agree that ... low-beta securities earn returns somewhat higher than the CAPM would predict, and high-beta securities earn less than predicted. ${ }^{30}$

Therefore, the empirical evidence suggests that the expected return on a security is related to its risk by the following approximation:

$$
K=R_{F}+x \beta\left(R_{M}-R_{F}\right)+(1-x) \beta\left(R_{M}-R_{F}\right)
$$

where x is a fraction to be determined empirically. The value of x that best explains the observed relationship [is] Return $=0.0829+$
0.0520β is between 0.25 and 0.30 . If $x=0.25$, the equation becomes:

$$
K=R_{F}+0.25\left(R_{M}-R_{F}\right)+0.75 \beta\left(R_{M}-R_{F}\right)^{31}
$$

Fama and French provide similar support for the ECAPM when they state:
The early tests firmly reject the Sharpe-Lintner version of the CAPM. There is a positive relation between beta and average return, but it is too 'flat.'... The regressions consistently find that the intercept is greater than the average risk-free rate... and the coefficient on beta is less than the average excess market return... This is true in the early tests... as well as in more recent crosssection regressions tests, like Fama and French (1992). ${ }^{32}$

Finally, Fama and French further note:
Confirming earlier evidence, the relation between beta and average return for the ten portfolios is much flatter than the Sharpe-Linter CAPM predicts. The returns on low beta portfolios are too high, and the returns on the high beta portfolios are too low. For example, the predicted return on the portfolio with the lowest beta is 8.3 percent per year; the actual return as 11.1 percent. The predicted return on the portfolio with the t beta is 16.8 percent per year; the actual is 13.7 percent. ${ }^{33}$

Clearly, the justification from Morin, Fama, and French along with their reviews of other academic research on the CAPM, validate the use of the ECAPM. In view of theory and practical research, I have applied both the traditional CAPM and the ECAPM to the companies in the Utility Proxy Group and averaged the results.

Q. What beta coefficients did you use in your CAPM analysis?

A. With respect to the beta coefficient, I considered two methods of calculation: the average of the beta coefficients of the Utility Proxy Group companies reported by Bloomberg Professional Services and the average of the beta coefficients of the

[^12]Utility Proxy Group companies as reported by Value Line. While both of those services adjust their calculated (or "raw") beta coefficients to reflect the tendency of the beta coefficient to regress to the market mean of 1.00, Value Line calculates the beta coefficient over a five-year period, while Bloomberg's calculation is based on two years of data.
Q. Please describe your selection of a risk-free rate of return.
A. As shown in Column 5 on page 1 of Attachment DWD-5, the risk-free rate adopted for both applications of the CAPM is 2.11%. This risk-free rate of 2.11% is based on the average of the Blue Chip consensus forecast of the expected yields on 30 -year U.S. Treasury bonds for the six quarters ending with the first calendar quarter of 2022, and long-term projections for the years 2022 to 2026 and 2027 to 2031.
Q. Why is the yield on long-term U.S. Treasury bonds appropriate for use as the risk-free rate?
A. The yield on long-term U.S. Treasury Bonds is almost risk-free and its term is consistent with the long-term cost of capital to public utilities measured by the yields on A-rated public utility bonds; the long-term investment horizon inherent in utilities' common stocks; and the long-term life of the jurisdictional rate base to which the allowed fair rate of return (i.e., cost of capital) will be applied. In contrast, short-term U.S. Treasury yields are more volatile and largely a function of Federal Reserve monetary policy.
Q. Please explain the estimation of the expected risk premium for the market used in your CAPM analyses.
A. The basis of the market risk premium is explained in detail in note 1 on page 2 of Attachment DWD-5. As discussed previously, the market risk premium is derived from an average of:
(i) Ibbotson-based market risk premiums;
(ii) Value Line data-based market risk premiums; and
(iii) Bloomberg data-based market risk premium.

The long-term income return on U.S. Government Securities of 5.09\% was deducted from the SBBI - 2020 monthly historical total market return of 12.10%, which results in an historical market equity risk premium of $7.01 \% .{ }^{34}$ I applied a linear OLS regression to the monthly annualized historical returns on the S\&P 500 relative to historical yields on long-term U.S. Government Securities from SBBI-2020. That regression analysis yielded a market equity risk premium of 10.18\%. The PRPM market equity risk premium is 10.66% and is derived using the PRPM relative to the yields on long-term U.S. Treasury securities from January 1926 through September 2020.

The Value Line-derived forecasted total market equity risk premium is derived by deducting the forecasted risk-free rate of 2.11%, discussed above, from the Value Line projected total annual market return of 13.69%, resulting in a forecasted total market equity risk premium of 11.58%. The S\&P 500 projected market equity risk premium using Value Line data is derived by subtracting the

[^13]projected risk-free rate of 2.11% from the projected total return of the S\&P 500 of 13.95%. The resulting market equity risk premium is 11.84%.

The S\&P 500 projected market equity risk premium using Bloomberg data is derived by subtracting the projected risk-free rate of 2.11% from the projected total return of the S\&P 500 of 13.70%. The resulting market equity risk premium is 11.59%.

These six market risk premiums, when averaged, result in an average total market equity risk premium of 10.48%.
Q. What are the results of your application of the traditional and empirical CAPM to the Utility Proxy Group?
A. As shown on page 1 of Attachment DWD-5, the mean result of my CAPM/ECAPM analyses is 10.61%, the median is 11.12%, and the average of the two is 10.87%. Consistent with my reliance on the average of mean and median DCF results discussed above, the indicated common equity cost rate using the CAPM/ECAPM is 10.87%.
D. COMMON EQUITY COST RATES FOR A PROXY GROUP OF DOMESTIC, NON-PRICE REGULATED COMPANIES BASED ON THE DCF, RPM, AND CAPM
Q. Why did you also consider a proxy group of domestic, non-price regulated companies?
A. In the Hope and Bluefield cases, the U.S. Supreme Court did not specify that comparable risk companies had to be utilities. Since the purpose of rate regulation is to be a substitute for the competition of the marketplace, non-price regulated firms operating in the competitive marketplace make an excellent proxy if they are comparable in total risk to the Utility Proxy Group being used to
estimate the cost of common equity. The selection of such domestic, non-price regulated competitive firms theoretically and empirically results in a proxy group which is comparable in total risk to the Utility Proxy Group.

Q. How did you select non-price regulated companies that are comparable in total risk to the Utility Proxy Group?

A. In order to select a proxy group of domestic, non-price regulated companies similar in total risk to the Utility Proxy Group, I relied on the beta coefficients and related statistics derived from Value Line regression analyses of weekly market prices over the most recent 260 weeks (i.e., five years). Using these selection criteria resulted in a proxy group of 23 domestic, non-price regulated firms comparable in total risk to the Utility Proxy Group. Total risk is the sum of nondiversifiable market risk and diversifiable company-specific risks. The criteria used in the selection of the domestic, non-price regulated firms was:
(i) They must be covered by Value Line Investment Survey (Standard Edition);
(ii) They must be domestic, non-price regulated companies, i.e., non-utilities;
(iii) Their beta coefficients must lie within plus or minus two standard deviations of the average unadjusted beta coefficient of the Utility Proxy Group; and
(iv) The residual standard errors of the Value Line regressions which gave rise to the unadjusted beta coefficients must lie within plus or minus two standard deviations of the average residual standard error of the Utility Proxy Group.

Beta coefficients are a measure of market or systematic risk, which is not diversifiable. The residual standard errors of the regressions were used to measure each firm's company-specific, diversifiable risk. Companies that have similar beta coefficients and similar residual standard errors resulting from the same regression analyses have similar total investment risk.
Q. Have you prepared an attachment which shows the data from which you selected the 23 domestic, non-price regulated companies that are comparable in total risk to the Utility Proxy Group?
A. Yes, the basis of my selection, and both proxy groups' regression statistics, are shown in Attachment DWD-6.
Q. Did you calculate common equity cost rates using the DCF, RPM, and CAPM for the Non-Price Regulated Proxy Group?
A. Yes. Because the DCF, RPM, and CAPM have been applied in an identical manner as described above, I will not repeat the details of the rationale and application of each model. One exception is in the application of the RPM, where I did not use public utility-specific equity risk premiums, nor did I apply the PRPM to the individual companies.

Page 2 of Attachment DWD-7 contains the derivation of the DCF cost rates. As shown, the indicated common equity cost rate using the DCF for the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group, is 10.26%.

Pages 3 through 5 contain the data and calculations that support the 11.50% RPM cost rate. As shown on Line No. 1 of page 3 of Attachment DWD7, the consensus prospective yield on Moody's Baa-rated corporate bonds for the six quarters ending in the first quarter of 2022, and for the years 2022 to 2026 and 2027 to 2031, is $4.08 \% .{ }^{35}$ Because the Non-Price Regulated Proxy Group has an average Moody's bond rating of Baa1, a downward adjustment of 0.20\% to the prospective Baa2-rated bond yield is necessary to reflect the difference in bond ratings. ${ }^{36}$ Subtracting 0.20% from the prospective Baa2-rated bond yield of 4.08% is 3.88%.

When the beta-adjusted risk premium of $7.62 \%{ }^{37}$ relative to the Non-Price Regulated Proxy Group is added to the prospective Baa1-rated corporate bond yield of 3.88%, the indicated RPM cost rate is 11.50%.

Page 6 contains the inputs and calculations that support my indicated CAPM/ECAPM cost rate of 10.70%.
Q. What is the cost rate of common equity based on the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group?
A. As shown on page 1 of Attachment DWD-7, the results of the DCF, RPM, and CAPM applied to the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group are $10.26 \%, 11.50 \%$, and 10.70%, respectively. The average of the mean and median of these models is 10.76%, which I used as the indicated common equity cost rate for the Non-Price Regulated Proxy Group.

[^14]
VIII. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENT

Q. What is the indicated range of common equity cost rates before adjustment?

A. Based on the results of the application of multiple cost of common equity models to the Utility Proxy Group and the Non-Price Regulated Proxy Group, the indicated model results are between 9.09% and 10.87%. I used multiple cost of common equity models as primary tools in arriving at my recommended common equity cost rate, because no single model is so inherently precise that it can be relied on solely to the exclusion of other theoretically sound models. The use of multiple models adds reliability to the estimation of the common equity cost rate, and the prudence of using multiple cost of common equity models is supported in both the financial literature and regulatory precedent.

IX. ADJUSTMENTS TO THE COMMON EQUITY COST RATE

A. SIZE ADJUSTMENT

Q. Does AWNH's smaller size compared with the Utility Proxy Group increase its business risk?
A. Yes. AWNH's smaller size relative to the Utility Proxy Group companies indicates greater relative business risk for the Company because, all else being equal, size has a material bearing on risk.

Size affects business risk because smaller companies generally are less able to cope with significant events that affect sales, revenues, and earnings. For example, smaller companies face more risk exposure to business cycles and economic conditions, both nationally and locally. Additionally, the loss of revenues from a few larger customers would have a greater effect on a small
company than on a bigger company with a larger, more diverse, customer base.
As further evidence illustrates that smaller firms are riskier, investors generally demand greater returns from smaller firms to compensate for less marketability and liquidity of their securities. Duff \& Phelps' 2020 Valuation Handbook - U.S. Guide to Cost of Capital ("D\&P - 2020") discusses the nature of the small-size phenomenon, providing an indication of the magnitude of the size premium based on several measures of size. In discussing "Size as a Predictor of Equity Premiums," D\&P - 2020 states:

The size effect is based on the empirical observation that companies of smaller size are associated with greater risk and, therefore, have greater cost of capital [sic]. The "size" of a company is one of the most important risk elements to consider when developing cost of equity capital estimates for use in valuing a business simply because size has been shown to be a predictor of equity returns. In other words, there is a significant (negative) relationship between size and historical equity returns - as size decreases, returns tend to increase, and vice versa. (footnote omitted) (emphasis in original) ${ }^{38}$

Furthermore, in "The Capital Asset Pricing Model: Theory and Evidence," Fama and French note size is indeed a risk factor which must be reflected when estimating the cost of common equity. On page 14, they note:
. . . the higher average returns on small stocks and high book-tomarket stocks reflect unidentified state variables that produce undiversifiable risks (covariances) in returns not captured in the market return and are priced separately from market betas. ${ }^{39}$

Based on this evidence, Fama and French proposed their three-factor model which includes a size variable in recognition of the effect size has on the cost of common equity.

Also, it is a basic financial principle that the use of funds invested, and not

[^15]the source of funds, is what gives rise to the risk of any investment. ${ }^{40}$ Eugene Brigham, a well-known authority, states:

A number of researchers have observed that portfolios of smallfirms (sic) have earned consistently higher average returns than those of large-firm stocks; this is called the "small-firm effect." On the surface, it would seem to be advantageous to the small firms to provide average returns in a stock market that are higher than those of larger firms. In reality, it is bad news for the small firm; what the small-firm effect means is that the capital market demands higher returns on stocks of small firms than on otherwise similar stocks of the large firms. (emphasis added) ${ }^{41}$

Consistent with the financial principle of risk and return discussed above, increased relative risk due to small size must be considered in the allowed rate of return on common equity. Therefore, the Commission's authorization of a cost rate of common equity in this proceeding must appropriately reflect the unique risks of AWNH, including its small size, which is justified and supported above by evidence in the financial literature.
Q. Should the Commission consider AWNH as a stand-alone company?
A. Yes, it should. Because it is AWNH's rate base to which the overall rates of return set forth in this proceeding will be applied, they should be evaluated as a stand-alone entity. To do otherwise would be discriminatory, confiscatory, and inaccurate. It is also a basic financial precept that the use of the funds invested give rise to the risk of the investment. As Brealey and Myers state:

The true cost of capital depends on the use to which the capital is put.

Each project should be evaluated at its own opportunity cost of
40 Richard A. Brealey and Stewart C. Myers, Principles of Corporate Finance (McGraw-Hill Book Company, 1996), at 204-205, 229.
41 Eugene F. Brigham, Fundamentals of Financial Management, Fifth Edition (The Dryden Press, 1989), at 623.
capital; the true cost of capital depends on the use to which the capital is put. (italics and bold in original) ${ }^{42}$

Morin confirms Brealey and Myers when he states:
Financial theory clearly establishes that the cost of equity is the risk-adjusted opportunity cost of the investors and not the cost of the specific capital sources employed by the investors. The true cost of capital depends on the use to which the capital is put and not on its source. The Hope and Bluefield doctrines have made clear that the relevant considerations in calculating a company's cost of capital are the alternatives available to investors and the returns and risks associated with those alternatives. ${ }^{43}$

Additionally, Levy and Sarnat state:
The firm's cost of capital is the discount rate employed to discount the firm's average cash flow, hence obtaining the value of the firm. It is also the weighted average cost of capital, as we shall see below. The weighted average cost of capital should be employed for project evaluation... only in cases where the risk profile of the new projects is a "carbon copy" of the risk profile of the firm ${ }^{44}$

Although Levy and Sarnat discuss a project's cost of capital relative to a firm's cost of capital, these principles apply equally to the use of a proxy groupbased cost of capital. Each company must be viewed on its own merits, regardless of the source of its equity capital. As Bluefield clearly states:

A public utility is entitled to such rates as will permit it to earn a return on the value of the property which it employs for the convenience of the public equal to that generally being made at the same time and in the same general part of the country on investments in other business undertakings which are attended by corresponding risks and uncertainties; ${ }^{45}$

In other words, it is the "risks and uncertainties" surrounding the property employed for the "convenience of the public" which determines the appropriate

[^16] level of rates. In this proceeding, the property employed "for the convenience of the public" is the rate base of AWNH. Thus, it is only the risk of investment in AWNH that is relevant to the determination of the cost of common equity to be applied to the common equity-financed portion of that rate base.

In addition, in the Fama and French article previously cited, the authors ${ }^{46}$ proposed that their three-factor model include the SMB (Small Minus Big) factor, which indicates that small capitalization firms are more risky than large capitalization firms, confirming that size is a risk factor which must be taken into account in estimating the cost of common equity.

Consistent with the financial principle of risk and return discussed previously, and the stand-alone nature of ratemaking, an upward adjustment must be applied to the indicated cost of common equity derived from the cost of equity models of the proxy groups used in this proceeding.
Q. Is there a way to quantify a relative risk adjustment due to AWNH's small size relative to the Utility Proxy Group?
A. Yes. The Company has greater relative risk than the average company in the Utility Proxy Group because of its smaller size compared with the group, as measured by an estimated market capitalization of common equity for AWNH (whose common stock is not publicly-traded).

[^17]Table 5: Size as Measured by Market Capitalization for the Company and the Utility Proxy Group

Market
Capitalization* (\$ Millions)

AWNH
\$54.075
Utility Proxy Group
\$6,572.792
121.5x
*From page 1 of Attachment DWD-8.
The Company's estimated market capitalization was at $\$ 54.075$ million as of October 16, 2020, compared with the market capitalization of the average water company in the Utility Proxy Group of $\$ 6.573$ billion as of October 16, 2020. The Utility Proxy Group's market capitalization is 121.5 times the size of AWNH's estimated market capitalization.

As a result, it is necessary to upwardly adjust the indicated range of common equity cost rates to reflect AWNH's greater risk due to its smaller relative size. The determination is based on the size premiums for portfolios of New York Stock Exchange, American Stock Exchange, and NASDAQ listed companies ranked by deciles for the 1926 to 2019 period. The average size premium for the Utility Proxy Group with a market capitalization of $\$ 6.573$ billion falls in the $4^{\text {th }}$ decile, while AWNH's market capitalization of $\$ 54.075$ million places the Company in the $10^{\text {th }}$ decile. The size premium spread between the $4^{\text {th }}$ decile and the $10^{\text {th }}$ decile is 4.20%. Even though a 4.20% upward size adjustment is indicated, I apply a size premium of 1.00% to AWNH's indicated range of common equity cost rates.
Q. Since AWNH is a wholly-owned subsidiary of Aquarion Water Company, which is in turn a wholly-owned subsidiary of Eversource Energy, why is the size of Eversource Energy not more appropriate to use when determining the size adjustment?
A. As discussed above, the return derived in this proceeding will not apply to Eversource Energy as a whole, but only AWNH. Eversource Energy is the sum of its constituent parts, including those constituent parts' returns on common equity. Potential investors in Eversource Energy are aware that it is a combination of operations in each state, and that each state's operations experience the operating risks specific to their jurisdiction. The market's expectation of Eversource Energy's return is commensurate with the realities of its composite operations in each of the states in which it operates.

B. CONSIDERATION OF REQUESTED MECHANISMS FOR AWNH

Q. Does AWNH's requested revenue adjustment mechanism ("RAM") decrease its required return on common equity?
A. No. The cost of capital is a comparative exercise, so if the mechanism is common throughout the companies on which one bases their analyses on, the comparative risk is zero, because any impact of the perceived reduced risk of the mechanism(s) by investors would be reflected in the market data of the proxy group. To that point, as shown on Attachment DWD-9, every single one of the proxy companies has a Distribution Service Improvement Charge and five of seven of the Utility Proxy Group companies have a RAM-type mechanism in at least one of their jurisdictions.

Q. ARE YOU AWARE OF ANY STUDIES THAT HAVE ADDRESSED THE

 RELATIONSHIP BETWEEN DECOUPLING MECHANISMS, GENERALLY, AND the return on common equity?A. Yes. I, along with Dr. Richard A. Michelfelder of Rutgers University, and my colleague at ScottMadden, Pauline M. Ahern, CRRA, examined the relationship between decoupling and return on common equity among electric, gas, and water utilities. Using the PRPM, we found decoupling to have no statistically significant effect on investor perceived risk, and hence, the return on common equity. ${ }^{47}$

Also, in March 2014, The Brattle Group ("Brattle") published a study addressing the effect of revenue decoupling structures on the cost of capital for electric utilities. ${ }^{48}$ In its report, which extended a prior analysis focused on natural gas distribution utilities, Brattle pointed out that although decoupling structures may affect revenues, net income still can vary. ${ }^{49}$ Brattle further noted that the distinction between diversifiable and non-diversifiable risk is important to equity investors, and the relationship between decoupling and return on common equity should be examined in that context. Further to that point, Brattle noted that although reductions in total risk may be important to bondholders, only reductions in non-diversifiable business risk would justify a reduction to the return

[^18]on common equity. ${ }^{50}$ In November 2016, the Brattle study was updated based on data through the fourth quarter of $2015 .{ }^{51}$

Brattle's empirical analysis examined the relationship between decoupling and the After-Tax weighted average cost of capital for a group of electric utilities that had implemented decoupling structures in various jurisdictions throughout the United States. As with Brattle's 2014 study, the updated study found no statistically significant link between the cost of capital and revenue decoupling structures. ${ }^{52}$

In view of all of the above, AWNH's return on common equity should not be reduced if the RAM is approved by the Commission in this Docket.

C. FLOTATION COST ADJUSTMENT

Q. What are flotation costs?

A. Flotation costs are those costs associated with the sale of new issuances of common stock. They include market pressure and the essential costs of issuance (e.g., underwriting fees and out-of-pocket costs for printing, legal, registration, etc.).
Q. Why is it important to recognize flotation costs in the allowed common equity cost rate?
A. It is important because there is no other mechanism in the ratemaking paradigm through which such costs can be recovered. Because these costs are real and legitimate, recovery of these costs should be permitted. As noted by Morin:

[^19]The costs of issuing these securities are just as real as operating and maintenance expenses or costs incurred to build utility plants, and fair regulatory treatment must permit recovery of these costs....

The simple fact of the matter is that common equity capital is not free....[Flotation costs] must be recovered through a rate of return adjustment. ${ }^{53}$

Q. Should flotation costs be recognized only when there has been an issuance during the test year or there is an imminent post-test year issuance of additional common stock?

A. No. As noted above, there is no mechanism to recapture such costs in the ratemaking paradigm other than an adjustment to the allowed common equity cost rate. Flotation costs are charged to capital accounts and are not expensed on a utility's income statement. As such, flotation costs are analogous to capital investments reflected on the balance sheet. Recovery of capital investments relates to the expected useful lives of the investment. Since common equity has a very long and indefinite life (assumed to be infinity in the standard regulatory DCF model), flotation costs should be recovered through an adjustment to common equity cost rate, even when there has not been an issuance during the test year or in the absence of an expected imminent issuance of additional shares of common stock.

Historical flotation costs are a permanent loss of investment to the utility and should be accounted for. When any company, including a utility, issues common stock, flotation costs are incurred for legal, accounting, printing fees and the like. For each dollar of issuing market price, a small percentage is expensed and is permanently unavailable for investment in utility rate base. Since these

[^20]expenses are charged to capital accounts and not expensed on the income statement, the only way to restore the full value of that dollar of issuing price with an assumed investor required return of 10% is for the net investment, $\$ 0.95$, to earn more than 10% to net back to the investor a fair return on that dollar. In other words, if a company issues stock at $\$ 1.00$ with 5% in flotation costs, it will net $\$ 0.95$ in investment. Assuming the investor in that stock requires a 10% return on his or her invested $\$ 1.00$ (i.e., a return of $\$ 0.10$), the company needs to earn approximately 10.5% on its invested $\$ 0.95$ to receive a $\$ 0.10$ return.

Q. Do the common equity cost rate models you have used already reflect investors' anticipation of flotation costs?

A. No. All of these models assume no transaction costs. The literature is quite clear that these costs are not reflected in market prices paid for common stocks. For example, Brigham and Daves confirm this and provide the methodology utilized to calculate the flotation adjustment. ${ }^{54}$ In addition, Morin confirms the need for such an adjustment even when no new equity issuance is imminent. ${ }^{55}$ Consequently, it is proper to include a flotation cost adjustment when using cost of common equity models to estimate the common equity cost rate.

Q. How did you calculate the flotation cost allowance?

A. I modified the DCF calculation to provide a dividend yield that would reimburse investors for issuance costs in accordance with the method cited in literature by Brigham and Daves, as well as by Morin. The flotation cost adjustment recognizes the costs of issuing equity that were incurred by Eversource Energy,

54 Eugene F. Brigham and Phillip R. Daves, Intermediate Financial Management, 9th Edition, Thomson/Southwestern, at p. 342. Morin, at pp. 327-330.

AWNH's parent company, since its acquisition of AWNH. Based upon the issuance costs shown on page 1 of Attachment DWD-10, an adjustment of 0.04% is required to reflect the flotation costs applicable to the Company.
Q. What is the indicated range of common equity cost rates after adjustments for size, credit risk, and flotation costs?

After applying the 1.00% size adjustment and 0.04% flotation cost adjustment to the indicated range of common equity cost rates between 9.09% and 10.87%, based on the Utility Proxy Group results, a range of common equity cost rates between 10.13% and 11.91% is applicable to AWNH.

X. CONCLUSION OF COMMON EQUITY COST RATE

Q. What is your recommended common equity cost rate for AWNH?
A. Given the indicated range of common equity cost rates between 9.09% and 10.87% applicable to the Utility Proxy Group and 10.13% and 11.91% applicable to AWNH, I conclude that a common equity cost rate of 10.25% for the Company is appropriate.
Q. In your opinion, is your proposed common equity cost rate of $\mathbf{1 0 . 2 5 \%}$ fair and reasonable to AWNH, its shareholders, and its customers?
A. Yes, it is.
Q. Does this conclude your direct testimony?
A. Yes, it does.

Abstract

Summary Dylan is an experienced consultant and a Certified Rate of Return Analyst (CRRA) and Certified Valuation Analyst (CVA). He has served as a consultant for investor-owned and municipal utilities and authorities for 12 years. Dylan has extensive experience in rate of return analyses, class cost of service, rate design, and valuation for regulated public utilities. He has testified as an expert witness in the subjects of rate of return, cost of service, rate design, and valuation before 23 regulatory commissions in the U.S., one Canadian province, and an American Arbitration Association panel.

He also maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured.

Areas of Specialization

■	Regulation and Rates	■	Financial Modeling	\square	Rate of Return
\square	Utilities	-	Valuation	\square	Cost of Service
-	Mutual Fund Benchmarking	\square	Regulatory Strategy	\square	Rate Design
\square	Capital Market Risk	\square	Rate Case Support		

Recent Expert Testimony Submission/Appearances

\quad Jurisdiction
Massachusetts Department of Public Utilities
New Jersey Board of Public Utilities
Hawaii Public Utilities Commission
South Carolina Public Service Commission
American Arbitration Association

Topic

- Massachusetts Department of Public Utilities
- New Jersey Board of Public Utiries

Rate of Return

- South Carolina Public Service Commission
- American Arbitration Association

Rate of Return
Cost of Service, Rate Design
Return on Common Equity Valuation

Recent Assignments

- Provided expert testimony on the cost of capital for ratemaking purposes before numerous state utility regulatory agencies
- Maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured
- Sponsored valuation testimony for a large municipal water company in front of an American Arbitration Association Board to justify the reasonability of their lease payments to the City
- Co-authored a valuation report on behalf of a large investor-owned utility company in response to a new state regulation which allowed the appraised value of acquired assets into rate base

Recent Publications and Speeches

- Co-Author of: "Decoupling, Risk Impacts and the Cost of Capital", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. The Electricity Journal, March, 2020.
- Co-Author of: "Decoupling Impact and Public Utility Conservation Investment", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. Energy Policy Journal, 130 (2019), 311-319.
- "Establishing Alternative Proxy Groups", before the Society of Utility and Regulatory Financial Analysts: 51st Financial Forum, April 4, 2019, New Orleans, LA.
- "Past is Prologue: Future Test Year", Presentation before the National Association of Water Companies 2017 Southeast Water Infrastructure Summit, May 2, 2017, Savannah, GA.
- Co-author of: "Comparative Evaluation of the Predictive Risk Premium Model ${ }^{T \mathrm{M}}$, the Discounted Cash Flow Model and the Capital Asset Pricing Model", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University, Pauline M. Ahern, and Frank J. Hanley, The Electricity Journal, May, 2013.
- "Decoupling: Impact on the Risk and Cost of Common Equity of Public Utility Stocks", before the Society of Utility and Regulatory Financial Analysts: 45th Financial Forum, April 17-18, 2013, Indianapolis, IN.

SPONSOR	Date	CASE/APPLICANT	Docket No.	SubJect
Regulatory Commission of Alaska				
Alaska Power Company	09/20	Alaska Power Company; Goat Lake Hydro, Inc.; BBL Hydro, Inc.	Tariff Nos. TA886-2; TA6-521; TA4-573	Capital Structure
Alaska Power Company	07/16	Alaska Power Company	Docket No. TA857-2	Rate of Return
Alberta Utilities Commission				
AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc.	01/20	AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc.	2021 Generic Cost of Capital, Proceeding ID. 24110	Rate of Return
Arizona Corporation Commission				
EPCOR Water Arizona, Inc.	06/20	EPCOR Water Arizona, Inc.	Docket No. WS-01303A-200177	Rate of Return
Arizona Water Company	12/19	Arizona Water Company - Western Group	Docket No. W-01445A-19- 0278	Rate of Return
Arizona Water Company	08/18	Arizona Water Company - Northern Group	Docket No. W-01445A-180164	Rate of Return
Colorado Public Utilities Commission				
Summit Utilities, Inc.	04/18	Colorado Natural Gas Company	Docket No. 18AL-0305G	Rate of Return
Atmos Energy Corporation	06/17	Atmos Energy Corporation	Docket No. 17AL-0429G	Rate of Return
Delaware Public Service Commission				
Delmarva Power \& Light Co.	10/20	Delmarva Power \& Light Co.	Docket No. 20-0150	Rate of Return
Tidewater Utilities, Inc.	11/13	Tidewater Utilities, Inc.	Docket No. 13-466	Capital Structure
Public Service Commission of the District of Columbia				
Washington Gas Light Company	09/20	Washington Gas Light Company	Formal Case No. 1162	Rate of Return
Federal Energy Regulatory Commission				
LS Power Grid California, LLC	10/20	LS Power Grid California, LLC	Docket No. ER21-195-000	Rate of Return
Florida Public Service Commission				
Peoples Gas System	09/20	Peoples Gas System	Docket No. 20200051-GU	Rate of Return
Utilities, Inc. of Florida	06/20	Utilities, Inc. of Florida	Docket No. 20200139-WS	Rate of Return
Hawaii Public Utilities Commission				
Lanai Water Company, Inc.	12/19	Lanai Water Company, Inc.	Docket No. 2019-0386	Cost of Service / Rate Design
Manele Water Resources, LLC	08/19	Manele Water Resources, LLC	Docket No. 2019-0311	Cost of Service / Rate Design
Kaupulehu Water Company	02/18	Kaupulehu Water Company	Docket No. 2016-0363	Rate of Return
Aqua Engineers, LLC	05/17	Puhi Sewer \& Water Company	Docket No. 2017-0118	Cost of Service / Rate Design
Hawaii Resources, Inc.	09/16	Laie Water Company	Docket No. 2016-0229	Cost of Service / Rate Design
Illinois Commerce Commission				
Ameren Illinois Company d/b/a Ameren Illinois	07/20	Ameren Illinois Company d/b/a Ameren Illinois	Docket No. 20-0308	Return on Equity
Utility Services of Illinois, Inc.	11/17	Utility Services of Illinois, Inc.	Docket No. 17-1106	Cost of Service / Rate Design
Aqua Illinois, Inc.	04/17	Aqua Illinois, Inc.	Docket No. 17-0259	Rate of Return

SpONSOR	Date	Case/Applicant	Docket No.	Subject
Utility Services of Illinois, Inc.	04/15	Utility Services of Illinois, Inc.	Docket No. 14-0741	Rate of Return
Indiana Utility Regulatory Commission				
Aqua Indiana, Inc.	03/16	Aqua Indiana, Inc. Aboite Wastewater Division	Docket No. 44752	Rate of Return
Twin Lakes, Utilities, Inc.	08/13	Twin Lakes, Utilities, Inc.	Docket No. 44388	Rate of Return
Kansas Corporation Commission				
Atmos Energy	07/19	Atmos Energy	19-ATMG-525-RTS	Rate of Return
Louisiana Public Service Commission				
Atmos Energy	04/20	Atmos Energy	Docket No. U-35535	Rate of Return
Louisiana Water Service, Inc.	06/13	Louisiana Water Service, Inc.	Docket No. U-32848	Rate of Return
Maryland Public Service Commission				
Washington Gas Light Company	08/20	Washington Gas Light Company	Case No. 9651	Rate of Return
FirstEnergy, Inc.	08/18	Potomac Edison Company	Case No. 9490	Rate of Return
Massachusetts Department of Public Utilities				
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Elec.)	D.P.U. 19-130	Rate of Return
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Gas)	D.P.U. 19-131	Rate of Return
Liberty Utilities	07/15	Liberty Utilities d/b/a New England Natural Gas Company	Docket No. 15-75	Rate of Return
Mississippi Public Service Commission				
Atmos Energy	03/19	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Atmos Energy	07/18	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Missouri Public Service Commission				
Indian Hills Utility Operating Company, Inc.	10/17	Indian Hills Utility Operating Company, Inc.	Case No. SR-2017-0259	Rate of Return
Raccoon Creek Utility Operating Company, Inc.	09/16	Raccoon Creek Utility Operating Company, Inc.	Docket No. SR-2016-0202	Rate of Return
Public Utilities Commission of Nevada				
Southwest Gas Corporation	08/20	Southwest Gas Corporation	Docket No. 20-02023	Return on Equity
New Jersey Board of Public Utilities				
FirstEnergy	02/20	Jersey Central Power \& Light Co.	Docket No. ER20020146	Rate of Return
Aqua New Jersey, Inc.	12/18	Aqua New Jersey, Inc.	Docket No. WR18121351	Rate of Return
Middlesex Water Company	10/17	Middlesex Water Company	Docket No. WR17101049	Rate of Return
Middlesex Water Company	03/15	Middlesex Water Company	Docket No. WR15030391	Rate of Return
The Atlantic City Sewerage Company	10/14	The Atlantic City Sewerage Company	Docket No. WR14101263	Cost of Service / Rate Design
Middlesex Water Company	11/13	Middlesex Water Company	Docket No. WR1311059	Capital Structure
North Carolina Utilities Commission				
Duke Energy Carolinas, LLC	07/20	Duke Energy Carolinas, LLC	Docket No. E-7, Sub 1214	Return on Equity
Duke Energy Progress, LLC	07/20	Duke Energy Progress, LLC	Docket No. E-2, Sub 1219	Return on Equity
Aqua North Carolina, Inc.	12/19	Aqua North Carolina, Inc.	Docket No. W-218 Sub 526	Rate of Return
Carolina Water Service, Inc.	06/19	Carolina Water Service, Inc.	Docket No. W-354 Sub 364	Rate of Return
Carolina Water Service, Inc.	09/18	Carolina Water Service, Inc.	Docket No. W-354 Sub 360	Rate of Return

SpONSOR	Date	CASE/APPLICANT	Docket No.	Subject
Aqua North Carolina, Inc.	07/18	Aqua North Carolina, Inc.	Docket No. W-218 Sub 497	Rate of Return
Public Utilities Commission of Ohio				
Aqua Ohio, Inc.	05/16	Aqua Ohio, Inc.	Docket No. 16-0907-WW-AIR	Rate of Return
Pennsylvania Public Utility Commission				
Valley Energy, Inc.	07/19	C\&T Enterprises	Docket No. R-2019-3008209	Rate of Return
Wellsboro Electric Company	07/19	C\&T Enterprises	Docket No. R-2019-3008208	Rate of Return
Citizens' Electric Company of Lewisburg	07/19	C\&T Enterprises	Docket No. R-2019-3008212	Rate of Return
Steelton Borough Authority	01/19	Steelton Borough Authority	Docket No. A-2019-3006880	Valuation
Mahoning Township, PA	08/18	Mahoning Township, PA	Docket No. A-2018-3003519	Valuation
SUEZ Water Pennsylvania Inc.	04/18	SUEZ Water Pennsylvania Inc.	Docket No. R-2018-000834	Rate of Return
Columbia Water Company	09/17	Columbia Water Company	Docket No. R-2017-2598203	Rate of Return
Veolia Energy Philadelphia, Inc.	06/17	Veolia Energy Philadelphia, Inc.	Docket No. R-2017-2593142	Rate of Return
Emporium Water Company	07/14	Emporium Water Company	Docket No. R-2014-2402324	Rate of Return
Columbia Water Company	07/13	Columbia Water Company	Docket No. R-2013-2360798	Rate of Return
Penn Estates Utilities, Inc.	12/11	Penn Estates, Utilities, Inc.	Docket No. R-2011-2255159	Capital Structure / Long-Term Debt Cost Rate
South Carolina Public Service Commission				
Blue Granite Water Co.	12/19	Blue Granite Water Company	Docket No. 2019-292-WS	Rate of Return
Carolina Water Service, Inc.	02/18	Carolina Water Service, Inc.	Docket No. 2017-292-WS	Rate of Return
Carolina Water Service, Inc.	06/15	Carolina Water Service, Inc.	Docket No. 2015-199-WS	Rate of Return
Carolina Water Service, Inc.	11/13	Carolina Water Service, Inc.	Docket No. 2013-275-WS	Rate of Return
United Utility Companies, Inc.	09/13	United Utility Companies, Inc.	Docket No. 2013-199-WS	Rate of Return
Utility Services of South Carolina, Inc.	09/13	Utility Services of South Carolina, Inc.	Docket No. 2013-201-WS	Rate of Return
Tega Cay Water Services, Inc.	11/12	Tega Cay Water Services, Inc.	Docket No. 2012-177-WS	Capital Structure
Tennessee Public Utility Commission				
Piedmont Natural Gas Company	07/20	Piedmont Natural Gas Company	Docket No. 20-00086	Return on Equity
Public Utility Commission of Texas				
Southwestern Electric Power Company	10/20	Southwestern Electric Power Company	Docket No. 51415	Rate of Return
Virginia State Corporation Commission				
Aqua Virginia, Inc.	07/20	Aqua Virginia, Inc.	PUR-2020-00106	Rate of Return
WGL Holdings, Inc.	07/18	Washington Gas Light Company	PUR-2018-00080	Rate of Return
Atmos Energy Corporation	05/18	Atmos Energy Corporation	PUR-2018-00014	Rate of Return
Aqua Virginia, Inc.	07/17	Aqua Virginia, Inc.	PUR-2017-00082	Rate of Return
Massanutten Public Service Corp.	08/14	Massanutten Public Service Corp.	PUE-2014-00035	Rate of Return / Rate Design

Aquarion Water Company of New Hampshire, Inc.
 Table of Contents Supporting Attachments Accompanying the Direct Testimony of Dylan W. D'Ascendis, CRRA, CVA

	Attachment
Summary of the Recommended Capital Structure and Return on Common Equity	DWD-1
Financial Profile of the Utility Proxy Group	DWD-2
Indicated Common Equity Cost Rate Using the Discounted Cash Flow Model Indicated Common Equity Cost Rate Using the Risk Premium Model Indicated Common Equity Cost Rate Using the Capital Asset Pricing Model	DWD-3
Basis of Selection for the Non-Price Regulated Companies Comparable in Total Risk to the Utility Proxy Group Cost of Common Equity Models Applied to the Non-Price Regulated Proxy Group	DWD-4
Estimated Risk Adjustment and Market Capitalization for AWNH and the Utility Proxy Group	DWD-5
Rate Mechanisms In Place at Proxy Group Operating Subsidiaries	
Calculation of Flotation Costs	DWD-7

Aquarion Water Company of New Hampshire, Inc. Recommended Capital Structure and Cost Rates for Ratemaking Purposes
at December 31, 2019

Type Of Capital	Ratios (1)	Cost Rate		Weighted Cost Rate
Long-Term Debt	43.85\%	6.14\%	(1)	2.69\%
Short-Term Debt	3.78\%	2.42\%	(1)	0.09\%
Preferred Equity	0.01\%	6.00\%	(1)	0.00\%
Common Equity	52.36\%	10.25\%	(2)	5.37\%
Total	100.00\%			8.15\%

Notes:
(1) Company-provided.
(2) From page 2 of this Attachment.

Aquarion Water Company of New Hampshire, Inc. Brief Summary of Common Equity Cost Rate

Line No.	Principal Methods	Proxy Group of Seven Water Companies
1.	Discounted Cash Flow Model (DCF) (1)	9.09\%
2.	Risk Premium Model (RPM) (2)	10.56\%
3.	Capital Asset Pricing Model (CAPM) (3)	10.87\%
4.	Market Models Applied to Comparable Risk, Non-Price Regulated Companies (4)	10.76\%
5.	Indicated Range of Common Equity Cost Rates before Adjustment for Unique Risk	9.09\%-10.87\%
6.	Business Risk Adjustment (5)	1.00\%
7.	Flotation Cost Adjustment (6)	0.04\%
8.	Indicated Range of Common Equity Cost Rates after Adjustment	10.13\%-11.91\%
9.	Recommended Common Equity Cost Rate	10.25\%

Notes: (1) From Attachment DWD-3.
(2) From page 1 of Attachment DWD-4.
(3) From page 1 of Attachment DWD-5.
(4) From page 1 of Attachment DWD-7.
(5) Business risk adjustment to reflect AWNH's unique risk compared to the Utility Proxy Group as detailed in the accompanying direct testimony.
(6) From Attachment DWD-10.

Notes:
(1) All capitalization and financial statistics for the group are the arithmetic average of the achieved results for each individual company in the group, and are based upon financial statements as originally reported in each year.
(2) Computed by relating actual total debt interest or preferred stock dividends booked to average of beginning and ending total debt or preferred stock reported to be outstanding.
(3) Total debt relative to EBITDA (Earnings before Interest, Income Taxes, Depreciation and Amortization).
(4) Funds from operations (sum of net income, depreciation, amortization, net deferred income tax and investment tax credits, less total AFUDC) plus interest charges as a percentage of total debt.

Source of Information: Company Annual Forms 10-K

Capital Structure Based upon Total Permanent Capital for the Proxy Group of Seven Water Companies

2015-2019, Inclusive

Source of Information
Annual Forms 10-K

[^21]

[^22]| ES | | $1 A$ | | NYSI | E-WTR | | | $\begin{aligned} & \text { ECENT } \\ & \text { RICE } \end{aligned}$ | 39.9 | $\begin{array}{\|l\|} \hline P / E \\ \mathrm{RA} \end{array}$ | 39 | $\overline{\left(\begin{array}{l} \text { Trialin } \\ \text { Media } \end{array}\right.}$ | $\begin{aligned} & \text { ing: } 34.7 \\ & \text { an: } 23.0 \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { RELATI } \\ \text { P/E RA } \end{array}$ | 1.8 | $\begin{aligned} & \hline \text { DIV'D } \\ & \text { YLD } \end{aligned}$ | | | VALUE LINE | |
| :---: |
| | $\text { NESS } 2$ | Lowered | 12420 | High: | 17.2 12.3 | 18.4 13.2 | 19.0 15.4 | 21.5 16.8 | 28.1 20.6 | 28.2 22.4 | 31.1 24.4 | $\begin{aligned} & 35.8 \\ & 28.0 \end{aligned}$ | $\begin{aligned} & 39.6 \\ & 29.4 \end{aligned}$ | $\begin{aligned} & 39.4 \\ & 32.1 \end{aligned}$ | $\begin{aligned} & 47.3 \\ & 32.7 \end{aligned}$ | $\begin{aligned} & 54.5 \\ & 30.4 \end{aligned}$ | | | $\begin{array}{\|l\|} \text { Target Pri } \\ 2023 \mid 20 \end{array}$ | Range 2025 |
| SAFE | | Raised | | LEGEN | IDS | 13.2 | | | | | | | | | | | | | | |
| TECH | CAL | Lowe | | | ided | | | | | | | | | | | | | | | 80 |
| BETA | (1.00 = | (arket) | | | 9/13 | | | | | | | | | | | | | | | ${ }^{60}$ |
| | Targ | Pri | nge | Shaded | res | | | | | | | | | | | | | | | 50 |
| | | oint | | | | | | | | | | | | ${ }^{\prime}{ }^{\prime}{ }^{\prime \prime}$ | | | | | | 30 |
| | -25 |
| $\$ 31-\$ 80$ | \$56 | (40\%) | | | | | | | | | | | | | | | | | | 20 |
| | 3-25 PRO | JECTIO | NS | | | | | | | | | | | | | | | | | -15 |
| | ice | ain | | | | | | | | | | | | | | | | | | -10 |
| $\begin{array}{\|l\|l} \text { High } \\ \text { Low } \end{array}$ | | $\begin{gathered} -40 \%) \\ (\text { Nili } \end{gathered}$ | | | | | | | | | | | | | | | | | | -7.5 |
| Institu | tional D | ecision | | | | | | | | | | | | | | | | | RETURN 8/20 | |
| | 402019 | 102220 | 202220 | | | | | | | | | | | | | | | | STOCK | |
| | $\begin{aligned} & 274 \\ & 242 \end{aligned}$ | ${ }_{2}^{252}$ | | | | | | | | | | | | | | | | | $\begin{array}{rr} -2.4 & 8.7 \\ 35.7 & 17.6 \end{array}$ | |
| to Sell Hlld's(000) | 149836 | 161407 | 161504 | traded | | | | | | | | | | | | | | | 87.545 .6 | |
| 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | © VAL | UE LINE PUB. LLC | 23-25 |
| 2.78 | 3.08 | 3.23 | 3.61 | 3.71 | 3.93 | 4.21 | 4.10 | 4.32 | 4.32 | 4.37 | 4.61 | 4.62 | 4.56 | 4.71 | 4.03 | 6.35 | 7.55 | Reven | es per sh | 8.45 |
| . 87 | . 97 | 1.01 | 1.10 | 1.14 | 1.29 | 1.42 | 1.45 | 1.51 | 82 | 1.89 | . 87 | 2.07 | 2.12 | 1.90 | 1.73 | 1.95 | 2.30 | "Cash | Flow" per sh | 2.65 |
| . 51 | . 57 | . 56 | . 57 | . 58 | . 62 | . 72 | . 83 | . 87 | 1.16 | 1.20 | 1.14 | 1.32 | 1.35 | 1.08 | 1.04 | 1.00 | 1.20 | Earning | sper sh ${ }^{\text {A }}$ | 1.75 |
| 29 | . 32 | . 35 | . 38 | . 41 | . 44 | . 47 | . 50 | . 54 | . 58 | . 63 | . 69 | . 74 | . 79 | . 85 | . 91 | . 97 | 1.04 | Div'd | Decl'd per sh $\mathrm{Ba}_{\text {- }}$ | 1.30 |
| 1.23 | 1.47 | 1.64 | 1.43 | 1.58 | 1.66 | 1.89 | 1.90 | 1.98 | 1.73 | 1.84 | 2.07 | 2.16 | 2.69 | 2.78 | 2.49 | 2.20 | 3.80 | Cap'IS | pending per sh | 4.75 |
| 4.71 | 5.04 | 5.57 | 5.85 | 6.26 | 6.50 | 6.81 | 7.21 | 7.90 | 8.63 | 9.27 | 9.78 | 10.43 | 11.02 | 11.28 | 17.58 | 19.00 | 19.05 | Book V | Value per sh | 20.00 |
| 158.97 | 161.21 | 165.41 | 166.75 | 169.21 | 170.61 | 172.46 | 173.60 | 175.43 | 177.93 | 178.59 | 176.54 | 177.39 | 177.71 | 178.09 | 220.76 | 251.25 | 252.00 | Comm | O Shs Outst'g ${ }^{\text {c }}$ | 260.00 |
| 25.1 | 31.8 | 34.7 | 32.0 | 24.9 | 23.1 | 21.1 | 21.3 | 21.9 | 21.2 | 20.8 | 23.5 | 23.9 | 24.7 | 32.6 | 39.1 | Bold figu | res are | Avg An | n'I P/E Ratio | 27.0 |
| 1.33 | 1.69 | 1.87 | 1.70 | 1.50 | 1.54 | 1.34 | 1.34 | 1.39 | 1.19 | 1.09 | 1.18 | 1.25 | 1.24 | 1.76 | 2.12 | Value | | Relat | P/E Ratio | 1.50 |
| 2.3\% | 1.8\% | 1.8\% | 2.1\% | 2.8\% | 3.1\% | 3.1\% | 2.8\% | 2.8\% | 2.4\% | 2.5\% | 2.6\% | 2.3\% | 2.4\% | 2.4\% | 2.2\% | | | Avg An | n^{\prime} Div'd Yield | 2.7\% |
| CAPITAL STRUCTURE as of $6 / 30 / 20$
 Total Debt $\$ 5277.4$ mill. Due in 5 Yrs $\$ 496.0$ mill. LT Debt $\$ 5174.6$ mill. LT Interest $\$ 200.0$ mill. (53\% of Cap') | | | | | | 726.1 | 712.0 | 757.8 | 768.6 | 779.9 | 814.2 | 819.9 | 809.5 | 838.1 | 889.7 | 1600 | 1900 | Revenu | es (Smill) | 2200 |
| | | | | | | 124.0 | 144.8 | 153.1 | 205.0 | 213.9 | 201.8 | 234.2 | 239.7 | 192.0 | 224.5 | 250 | 300 | Net Pro | fit (\$mill) | 455 |
| | | | | | | 39.2\% | 32.9\% | 39.0\% | 10.0\% | 10.5\% | 6.9\% | 8.2\% | 6.6\% | 6.6\% | 6.6\% | 2.0\% | 3.5\% | Income | Tax Rate | 8.0\% |
| | | | | | | | . | | 1.1\% | 2.4\% | 3.1\% | 3.8\% | 6.3\% | 6.8\% | 7.2\% | 7.0\% | 7.0\% | AFUDC | \% to Net Profit | 7.0\% |
| Pension Assets-12/19 \$266.4 mill. Oblig. \$ $\$ 10.5$ mill. | | | | | | 56.6\% | 52.7\% | 52.7\% | 48.9\% | 48.5\% | 50.3\% | 48.4\% | 50.6\% | 54.4\% | 43.1\% | 53.5\% | 57.0\% | Long-T | erm Debt Ratio | 40.5\% |
| | | | | | | 43.4\% | 47.3\% | 47.3\% | 51.1\% | 51.5\% | 49.7\% | 51.6\% | 49.4\% | 45.6\% | 56.9\% | 46.5\% | 43.0\% | Comm | n Equity Ratio | 59.5\% |
| Pfd Stock None Common Stock 245,151,093 shares as of $7 / 27 / 20$ | | | | | | 2706.2 | 2646.8 | 2929.7 | 3003.6 | 3216.0 | 3469.5 | 3587.7 | 3965.4 | 4407.8 | 6824.2 | 10300 | 11000 | Total C | apital (\$mill) | 12800 |
| | | | | | | 3469.3 | 3612.9 | 3936.2 | 4167.3 | 4402.0 | 4688.9 | 5001.6 | 5399.9 | 5930.3 | 6345.8 | 9500 | 10150 | Net Pla | nt (Smill) | 12000 |
| | | | | | | 5.9\% | 6.9\% | 6.6\% | 8.0\% | 7.8\% | 6.9\% | 7.6\% | 7.1\% | 5.5\% | 4.2\% | 3.0\% | 4.0\% | Return | on Total Cap'I | 4.5\% |
| | | | | | | 10.6\% | 11.6\% | 11.0\% | 13.4\% | 12.9\% | 11.7\% | 12.7\% | 12.2\% | 9.6\% | 5.8\% | 5.0\% | 6.5\% | Return | on Shr. Equity | 9.0\% |
| MARKET CAP: $\$ 9.8$ billion (Large Cap) | | | | | | 10.6\% | 11.6\% | 11.0\% | 13.4\% | 12.9\% | 11.7\% | 12.7\% | 12.2\% | 9.6\% | 5.8\% | 5.0\% | 6.5\% | Return | on Com Equity | 9.0\% |
| | | TION | | 2019 | 6/30/20 | $\begin{aligned} & \hline 3.7 \% \\ & 65 \% \end{aligned}$ | $\begin{gathered} 4.6 \% \\ 60 \% \end{gathered}$ | $\begin{gathered} 4.3 \% \\ 61 \% \end{gathered}$ | $\begin{aligned} & \hline 6.7 \% \\ & 50 \% \end{aligned}$ | $\begin{aligned} & 6.1 \% \\ & 52 \% \end{aligned}$ | $\begin{gathered} \hline 4.7 \% \\ 60 \% \end{gathered}$ | 5.6\% 56% | $\begin{aligned} & 5.1 \% \\ & 59 \% \end{aligned}$ | $\begin{aligned} & 2.1 \% \\ & 79 \% \end{aligned}$ | . 9 . 84 | NMF 97\% | 1.0\% | Retaine | d to Com Eq ds to Net Prof | 2.5\% 74\% |

(SMILL.)	201	201	6/3020
Cash Assets	3.6	1868.9	7.3
Receivables	101.2	67.1	152.9
Inventory (AvgCst)	15.8	18.4	50.1
Other	26.6	58.3	102.2
Current Assets	147.2	2012.7	312.5
Accts Payable	77.3	74.9	124.1
Debt Due	160.0	130.8	102.8
Other	161.7	113.1	221.3
Current Liab.	399.0	318.8	448.2

ANNUAL RATES	Past	Past	Est'd '17-'19
of change (per sh)	10 Yrs.	5 Yrs.	to '23'25
Revenues	1.5%	$.5 \%$	11.5%
"Cash Flow"	5.0%	2.0%	5.5%
Earnings	7.0%	1.5%	7.0%
Dividends	7.5%	8.0%	7.5%
Book Value	8.0%	9.0%	7.0%

Calendar	QUARTERLY REVENUES (\$ mill.)				Full Year
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	
2017	187.8	203.4	215.0	203.3	809.5
2018	194.3	211.9	226.2	205.7	838.1
2019	201.1	218.9	243.6	226.1	889.7
2020	255.6	384.5	395	564.9	1600
2021	395	450	430	625	1900
Calendar	EARNINGS PER SHARE A				Full Year
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	
2017	. 28	. 34	. 43	. 30	1.35
2018	. 29	. 37	. 44	d. 02	1.08
2019	. 09	. 25	. 38	. 28	1.04
2020	. 20	. 29	. 23	. 28	1.00
2021	. 22	. 33	. 33	. 32	1.20
Cal-	QUARTERLY DIVIDENDS PAID ${ }^{\text {- }}$				Full
endar	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
2016	. 178	. 178	. 1913	. 1913	74
2017	. 1913	. 1913	. 2047	. 2047	. 79
2018	. 2047	. 2047	. 219	. 219	. 85
2019	. 219	. 219	. 2343	. 2343	. 91
2020	. 2343	. 2343	. 2507		

BUSINESS: Essential Utilities, Inc. became the new name for Aqua America on Feb. 3, 2020, to reflect the acquisition of Peoples, a natural gas utility, which occurred in $3 / 20$. In 2019, Aqua Amer. provided water and wastewater services to about three million people in PA, OH, TX, IL, NC, NJ, IN, and VA. Employed $1,583$. Acquired AquaSource, 7/13; North Maine Utilities, 7/15; and others.
Essential Utilities raised its dividend a solid 7% last quarter. The company increased the share payout from $\$ 0.2343$ to $\$ 0.2507$. This rate of increase ought to be maintained to mid-decade.
Earnings comparisons should be flat in 2020. Even though the second quarter surpassed our expectations, the company will probably be hindered by the costs associated with the large acquisition it made earlier this year. Recall that it (then known as Aqua America), paid $\$ 4.3$ billion and assumed over $\$ 1$ billion in debt to purchase Peoples gas utility. All told, Essential's share net should to be around $\$ 1.00$, which isn't bad considering the amount of unusual charges. It also should be noted that both of the company's two key segments are much less vulnerable to the eco nomic slowdown caused by the coronavirus. With the exception of industrial cus tomers, the demand for water and gas is relatively inelastic.
In 2021, we expect the bottom line to get back on track. Management is estimating that the regulated water and segments will grow 6% to 7.0%, and 8% to 10%, annually through 2022 . This, along

Water supply revenues 2019: residential, 58%; commercial, 16%; industrial, wastewater \& other, 26%. Off. \& dir. own less than 1% of the common stock; BlackRock, 10.5\%; Vanguard, 10.4\%; (4/20 proxy). Canadian Pension Plan about 8.8%. Pres. \& CEO Christopher Franklin. Inc.: PA Addr.: 762 West Lancaster Ave. Bryn Mawr, PA 19010. Tel.: 610-525-1400. Int.: www.essential.co.
with some rate relief and cost savings, should enable Essential's share net to reach \$1.20.
The construction budget is large. This year, the company plans on spending only $\$ 550$ million to upgrade its water pipelines and other assets. However, capital expenditures have been projected to total about $\$ 2.8$ billion through 2022. Thus spending ought to average over a $\$ 1$ billion annually in 2021 and 2020.
Finances are more than decent. True debt levels have increased as a result of the Peoples merger. In addition, external funds will be required to fund the massive building program discussed above. Nevertheless, the balance sheet is still better than average, and will likely remain so.
These shares are ranked 2 (Above Average) for year-ahead performance. So short-term investors looking for well defined prospects should find the stock of interest. For those looking out to 20232025, however, total return potential remains well below the Value Line median, as is the case with most members in this group.
James A. Flood

[^23]

[^24]| $\mathbf{S J}$ | G | | $N Y$ | SJW | | | | $\begin{aligned} & \text { ECENT } \\ & \text { RICE } \end{aligned}$ | 61.2 | $\begin{array}{\|l\|} \hline P / E \\ \text { RAT } \end{array}$ | 28 | $\overline{\text { (Trai }}$ | $\begin{aligned} & \text { ing: } 42.5 \\ & \text { ian: } 21.0 \end{aligned}$ | RELATIV | 1.3 | DIV'D | | | VALUE LINE | |
| :---: |
| TIMELIN | ESS | Suspende | 514/18 | High: | 30.4 18.2 | 28.2 21.6 | 26.8 20.9 | $\begin{array}{l\|} \hline 26.9 \\ 22.6 \end{array}$ | 30.1 24.5 | $\begin{aligned} & 33.7 \\ & 25.5 \end{aligned}$ | $\begin{array}{l\|} \hline 35.7 \\ 27.5 \end{array}$ | $\begin{aligned} & 56.9 \\ & 28.6 \end{aligned}$ | $\begin{aligned} & 69.3 \\ & 45.4 \end{aligned}$ | $\begin{aligned} & \hline 68.4 \\ & 51.3 \end{aligned}$ | 74.5 53.9 | $\begin{aligned} & 75.0 \\ & 45.6 \end{aligned}$ | | | Target Pri | Range |
| SAFET | | New 4122 | | LEGEN | S | | | | | | | | | | 53.9 | | | | | 12020 |
| TECHN | AL | Susoen | d/4/18 | | x Div | st | | | | | | | | | | | | | | 100 |
| $\text { EETA . } 80$ | $30(1.00=$ | Market) | | $\begin{aligned} & \text { apin } \\ & \text { options: } \end{aligned}$ | $\text { ative } \beta$ | Strength | | | | | | | | | | | | | | 80 |
| | th | t Pric | Range | | a ind | reces | | | | | | | | | | | | | | 64 |
| | 48 |
| Low-Hig | Mi | int (\% to | Mid) | | | | | | | | | ${ }^{\text {I }}$ | | | | | | | | |
| \$54-\$128 | \$91 | | | | | | | | | ,11, ${ }^{\prime \prime}$ | T, 11 | | | | | | | | | |
| | | | NS | . | | | 位 | | | | | | | | | | | | | 24 20 |
| | - | JEC | | | | | | | | | | | | | | \square | | | | 16 |
| | Price | in | | | | | | | | | | | | | | | | | | 12 |
| High Low | | 5% | 3\% | | | | | | | | - | | | | | | | | | |
| Institut | tional D | ecision | | | | | | | | | | | | | | | | \% TO | T. RETURN 8/20 | -8 |
| | 402019 | 102220 | 2020 | Percent | | | | | | | | | | | | | | | | |
| to Buy to Sell | $\begin{aligned} & 93 \\ & 76 \end{aligned}$ | $\begin{aligned} & 72 \\ & 95 \end{aligned}$ | | shares | | | | | | | | | | | | | | | $\begin{array}{rr} -7.2 & 8.7 \\ 18.6 & 17.6 \end{array}$ | |
| Hld's(000) | 19650 | 19448 | 19939 | | | | | | | | | | | | | | | 5 yr . | 138.545 .6 | |
| 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | © VAL | UE LINE PUB. LLC | 23-25 |
| 9.14 | 9.86 | 10.35 | 11.25 | 12.12 | 11.68 | 11.62 | 12.85 | 14.01 | 13.73 | 15.76 | 14.97 | 16.61 | 18.97 | 14.00 | 14.78 | 19.15 | 19.85 | Revenue | es per sh | 21.65 |
| 1.89 | 2.21 | 2.38 | 2.30 | 2.44 | 2.21 | 2.38 | 2.80 | 2.97 | 2.90 | 4.42 | 3.86 | 4.76 | 5.24 | 3.29 | 3.67 | 3.80 | 4.20 | "Cash F | Flow" per sh | 5.30 |
| . 87 | 1.12 | 1.19 | 1.04 | 1.08 | . 81 | . 84 | 1.11 | 1.18 | 1.12 | 2.54 | 1.85 | 2.57 | 2.86 | 1.82 | 1.35 | 2.05 | 2.50 | Earning | sper sh ${ }^{\text {A }}$ | 3.65 |
| . 51 | . 53 | . 57 | . 61 | . 65 | . 66 | . 68 | 69 | . 71 | . 73 | . 75 | . 78 | . 81 | 1.04 | 1.12 | 1.20 | 1.28 | 1.36 | Div'd De | cl'd per sh ${ }^{\text {Br }}$ | 1.66 |
| 2.31 | 2.83 | 3.87 | 6.62 | 3.79 | 3.17 | 5.65 | 3.75 | 5.67 | 4.68 | 5.02 | 5.24 | 6.95 | 7.26 | 5.08 | 6.25 | 5.25 | 5.75 | Cap' ${ }^{\text {Sp }}$ | pending per sh | 6.50 |
| 10.11 | 10.72 | 12.48 | 12.90 | 13.99 | 13.66 | 13.75 | 14.20 | 14.71 | 15.92 | 17.75 | 18.83 | 20.61 | 22.57 | 31.31 | 31.27 | 32.25 | 35.60 | Book Va | Vlue per sh | 39.15 |
| 18.27 | 18.27 | 18.28 | 18.36 | 18.18 | 18.50 | 18.55 | 18.59 | 18.67 | 20.17 | 20.29 | 20.38 | 20.46 | 20.52 | 28.40 | 28.46 | 29.00 | 29.50 | Common Shs Outst'g ${ }^{\text {c }}$ | | 30.00 |
| 19.6 | 19.7 | 23.5 | 33.4 | 26.2 | 28.7 | 29.1 | 21.2 | 20.4 | 24.3 | 11.2 | 16.6 | 15.7 | 18.8 | 32.7 | 47.8 | Bold figures are Value Line estimates | | Avg Ann'I P/E Ratio Relative P/E Ratio Avg Ann'I Div'd Yield | | 22.0 |
| 1.04 | 1.05 | 1.27 | 1.77 | 1.58 | 1.91 | 1.85 | 1.33 | 1.30 | 1.37 | . 59 | . 84 | . 82 | . 95 | 1.77 | 2.58 | | | 1.20 |
| 3.0\% | 2.4\% | 2.0\% | 1.7\% | 2.3\% | 2.8\% | 2.8\% | 2.9\% | 3.0\% | 2.7\% | 2.6\% | 2.5\% | 2.0\% | 1.9\% | 1.9\% | 1.9\% | | | 2.1\% |
| | | | | | | 215.6 | 239.0 | 261.5 | 276.9 | 319.7 | 305.1 | 339.7 | 389.2 | 397.7 | 420.5 | 555 | 585 | | | Revenues (\$mill) Net Profit (\$mill) | | 650 |
| | | | | | | 15.8 | 20.9 | 22.3 | 23.5 | 51.8 | 37.9 | 52.8 | 59.2 | 38.8 | 38.7 | 59.5 | 73.5 | | | 110 |
| | | | | | | 38.8\% | 41.1\% | 41.1\% | 38.7\% | 32.5\% | 38.1\% | 38.8\% | 36.7\% | 20.6\% | 25.3\% | 21.0\% | 21.0\% | Income Tax Rate | | | | 21.0\% |
| | | | | | | | | .. | | .. | .. | | .. | 2.0\% | 1.5\% | 1.5\% | 1.5\% | AFUDC \% to Net Profit | | 1.5\% |
| | | | | | | 53.7\% | 56.6\% | 55.0\% | 51.1\% | 51.6\% | 49.8\% | 50.7\% | 48.2\% | 32.7\% | 59.1\% | 58.0\% | 53.5\% | Long-Term Debt Ratio Common Equity Ratio | | 39.0\% |
| | | | | | | 46.3\% | 43.4\% | 45.0\% | 48.9\% | 48.4\% | 50.2\% | 49.3\% | 51.8\% | 67.3\% | 40.9\% | 42.0\% | 46.5\% | | | 61.0\% |
| Pension Assets-12/19 \$243.5 mill. Oblig. $\$ 338.2$ mill. | | | | | | 550.7 | 607.9 | 610.2 | 656.2 | 744.5 | 764.6 | 855.0 | 894.3 | 1320.7 | 2173.6 | 2235 | 2250 | Net Plant (Smill) | | 1925 |
| | | | | | | 785.5 | 756.2 | 831.6 | 898.7 | 963.0 | 1036.8 | 1146.4 | 1239.3 | 1328.8 | 2206.5 | 2300 | 2450 | | | 2775 |
| | | | | | | 4.3\% | 4.9\% | 5.0\% | 5.0\% | 8.3\% | 6.3\% | 7.4\% | 7.9\% | 3.9\% | 2.5\% | 3.0\% | 4.0\% | Return on Total Cap'l | | 6.5\% |
| Pfd Stock None. Common Stock 28,516,705 shs. | | | | | | 6.2\% | 7.9\% | 8.1\% | 7.3\% | 14.4\% | 9.9\% | 12.5\% | 12.8\% | 4.4\% | 4.3\% | 6.5\% | 7.0\% | Return on Shr. Equity Return on Com Equity | | 9.5\% |
| | | | | | | 6.2\% | 7.9\% | 8.1\% | 7.3\% | 14.4\% | 9.9\% | 12.5\% | 12.8\% | 4.4\% | 4.3\% | 6.5\% | 7.0\% | | | 9.5\% |
| MARKET CAP: $\$ 1.7$ billion (Mid Cap) | | | | | | 1.2\% | 3.1\% | 3.3\% | 2.8\% | 10.2\% | 5.7\% | 8.6\% | 8.2\% | 1.8\% | .5\% | 2.5\% | $\begin{aligned} & 3.0 \% \\ & 54 \% \end{aligned}$ | Retained to Com EqAll Div'ds to Net Prof | | 5.0\% |
| CURREN | NT POSI | ION | 2018 | 2019 | 6/30/20 | 80\% | 61\% | 59\% | 62\% | 29\% | 42\% | 31\% | 36\% | 60\% | 88\% | 62\% | | | | 45\% |

BUSINESS: SJW Group engages in the production, purchase, storage, purification, distribution, and retail sale of water. It provides water service to approximately 231,000 connections with a total population of roughly one million people in the San Jose area and 16,000 connections that reach about 49,000 residents in the region between San Antonio and Austin, Texas. The company merged
Shares of SJW traded above $\$ 70$ per operating expenses, as well as lower prodshare in mid-August before pulling uction and water purchase costs. back to levels seen three months Despite slightly lagging the Value prior. The East and West coasts (post Line median, SJW is currently one of CTWS merger) regulated water utility the more-attractive incomefound some market support following the generating options in the Water Utilirelease of better-than-expected second- ty industry. The current yield is hovering quarter financial results. Earlier this year, just above 2.0%, while many of its peers the company had been on shaky ground fall below that metric. Additionally, a reastemming from a combination of COVID- sonable payout ratio and prospects for in19 -related disruptions and the ongoing in- creased profitability suggest that annual tegration of Connecticut Water. Even so, dividend hikes are likely on tap over the SJW delivered a relatively inspiring June- coming years.
period performance. Revenues of $\$ 147 \mathrm{mil-}$ We are fans of the long-term story lion exceeded our $\$ 135$ million call, while earnings came in $\$ 0.09$ better than expected, at $\$ 0.69$ a share. However, the stock was unable to hold its gains, likely due to recent broader market turbulence amidst an uncertain economic backdrop.
We are lifting our profit forecasts for this year and next. Specifically, we are adding $\$ 0.10$ and $\$ 0.05$ to our 2020 and 2021 share-net estimates, to $\$ 2.05$ and $\$ 2.50$, respectively. In regard to the latter, our call for healthy double-digit bottomline expansion is underpinned by the assumption of subsiding integration-related

$\text { YORK WATER }{ }_{N D Q-Y O R w}$								$\begin{aligned} & \text { RECENT } \\ & \text { PRICE } \end{aligned}$	43.3	$\text { P/E } 34.2\binom{\text { Trailing: } 35.0}{\text { Median: } 26.0}$				$\begin{array}{\|l\|ll\|} \hline \text { RELATIVE } \\ \text { PIEE RATIO } 1.64 & \text { YIV'D } & \text { YLD } \\ \hline \end{array}$					$\begin{aligned} & \text { VALUE } \\ & \text { LINE } \end{aligned}$		
TIMELINESS $\mathbf{2}$ Raised $5 / 29 / 20$ SAFETY $\mathbf{3}$ Lowered $7 / 17 / 15$ TECHNICAL 2 Lowered $^{5} / 29220$ BETA $.80 \quad(1.00=$ Market)				High:	18.0 9.7	18.0 12.8	18.1 15.8	18.5 16.8	$\begin{aligned} & 22.0 \\ & 17.6 \end{aligned}$	$\begin{aligned} & 24.3 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 19.7 \end{aligned}$	$\begin{aligned} & 39.8 \\ & 23.8 \end{aligned}$	$\begin{aligned} & 39.9 \\ & 31.7 \end{aligned}$	$\begin{aligned} & 36.1 \\ & 27.5 \end{aligned}$	$\begin{aligned} & 47.3 \\ & 30.3 \end{aligned}$	51.3 34.6			Target Pri	Range 2025	
				LEGENDS divided by bidends p sh divided by interest Rate Relative Price Strength Options: Yes Shaded area area indicates recession															$2023 \mid 20$	2025	
																64					
												\|110.				48					
18-Month Target Price Range Low-High Midpoint (\% to Mid) $\$ 34-\$ 74 \quad \$ 54(25 \%)$													价\|							32	
											11 ! ${ }^{\text {IT }}$									24	
									,114												
																	16				
2023-25 PROJECTIONS Price Gain Ann'I Total Return 50 30 $(+15 \%)$ (-30%) 6%																\because				12	
				\cdots																8	
										\cdots											
Institutional Decisions ${ }_{\text {402019 }}{ }^{102020}{ }^{\text {202020 }}$					$\begin{aligned} & \text { Percent } \\ & \text { shares } \\ & \text { traded } \end{aligned}$														\% T	RETURN 8/20	
																			STICK		
	$\begin{aligned} & 52 \\ & 39 \end{aligned}$	$\begin{aligned} & 61 \\ & 52 \end{aligned}$																3 yr .	$\begin{array}{rr} 24.1 & 8.7 \\ 46.7 & 17.6 \end{array}$		
	5387	5387	5479								11لШ1			杖 1 ll	ШШلШ1				$\begin{array}{rr}437.0 & 17.6 \\ 137.0\end{array}$		
2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	© VAL	UELINE PUB. LLC	23-25	
2.18	2.58	2.56	2.79	2.89	2.95	3.07	3.18	3.21	3.27	3.58	3.68	3.70	3.77	3.74	3.96	4.10	4.20	Revenue	es per sh	5.10	
. 65	. 79	. 77	. 86	. 88	. 95	1.07	1.09	1.12	1.19	1.36	1.45	1.42	1.53	1.58	1.70	1.90	1.95	"Cash F	Flow" per sh	2.40	
. 49	. 56	. 58	. 57	. 57	. 64	. 71	. 71	. 72	. 75	. 89	. 97	. 92	1.01	1.04	1.11	1.30	1.35	Earning	sper sh ${ }^{\text {A }}$	1.60	
. 39	. 42	. 45	. 48	. 49	. 51	. 52	. 53	. 54	. 55	. 57	. 60	. 63	. 65	. 67	. 70	. 73	. 78	Div'd De	cl'd per sh B	. 95	
2.50	1.69	1.85	1.69	2.17	1.18	83	. 74	94	. 76	1.10	1.11	1.03	1.95	1.95	. 16	. 85	1.35	Cap'1 Sp	ending per sh	1.85	
4.65	4.85	5.84	5.97	6.14	6.92	7.19	7.45	7.73	7.98	8.15	8.51	8.88	9.28	9.75	10.31	11.15	11.60	Book Va	lue per sh	12.50	
10.33	10.40	11.20	11.27	11.37	12.56	12.69	12.79	12.92	12.98	12.83	12.81	12.85	12.87	12.94	13.02	13.00	12.95	Commo	Shs Outst'g ${ }^{\text {c }}$	12.80	
25.7	26.3	31.2	30.3	24.6	21.9	20.7	23.9	24.4	26.3	23.1	23.5	32.8	34.6	30.3	33.8	Bold	es are	Avg Ann	${ }^{\text {' }}$ P/E Ratio	25.0	
1.36	1.40	1.68	1.61	1.48	1.46	1.32	1.50	1.55	1.48	1.22	1.18	1.72	1.74	1.64	1.83			Relativ	P/E Ratio	1.40	
3.1\%	2.9\%	2.5\%	2.8\%	3.5%	3.6\%	3.5\%	3.1\%	3.1\%	2.8\%	2.8\%	2.6\%	2.1\%	1.9\%	2.1\%	1.9\%			Avg Ann	'I Div'd Yield	2.4\%	
CAPITAL STRUCTURE as of $6 / 30 / 20$ Total Debt $\$ 103.1$ mill. Due in 5 Yrs $\$ 42.5$ mill. LT Debt $\$ 96.6$ mill. LT Interest $\$ 5.5$ mill.						39.0	40.6	41.4	42.4	45.9	47.1	47.6	48.6	48.4	51.6	53.5	54.5	Revenue	es (Smill)	65.0	
						8.9	9.1	9.3	9.7	11.5	12.5	11.8	13.0	13.4	14.4	17.0	17.5	Net Prof	fit (\$mill)	20.5	
						38.5\%	35.3\%	37.6\%	37.6\%	29.8\%	27.5\%	31.3\%	25.9\%	15.7\%	13.5\%	18.5\%	21.0\%	Income	Tax Rate	21.0\%	
(41\% of Cap')						1.2\%	1.1\%	1.1\%	.8\%	1.8\%	1.6\%	1.9\%	6.7\%	1.7\%	2.5\%	1.5\%	1.5\%	AFUDC	\% to Net Profit	1.5\%	
Pension Assets12/19 \$49.3 mill. Oblig. $\$ 47.3$ mill.						48.3\%	47.1\%	46.0\%	45.1\%	44.8\%	44.4\%	42.6\%	43.0\%	42.5\%	41.3\%	38.5\%	37.5\%	Long-Te	rm Debt Ratio	36.0\%	
						51.7\%	52.9\%	54.0\%	54.9\%	55.2\%	55.6\%	57.4\%	57.0\%	57.5\%	58.7\%	61.5\%	62.5\%	Commo	n Equity Ratio	64.0\%	
Pfd Stock None						176.4	180.2	184.8	188.4	189.4	196.3	198.7	209.5	219.5	228.7	235	240	Total Ca	apital (\$mill)	250	
						228.4	233.0	240.3	244.2	253.2	261.4	270.9	288.8	299.2	313.2	315	320	Net Plan	nt (Smill)	335	
13,033,999 shs.						6.5\%	6.4\%	6.4\%	6.5\%	7.4\%	7.6\%	7.2\%	7.5\%	7.3\%	7.4\%	8.5\%	8.5\%	Return	on Total Cap'I	9.0\%	
						9.8\%	9.5\%	9.3\%	9.3\%	11.0\%	11.5\%	10.4\%	10.9\%	10.6\%	10.7\%	11.5\%	11.5\%	Return	on Shr. Equity	13.0\%	
MARKET CAP: $\mathbf{\$ 5 7 5}$ million (Small Cap)						9.8\%	9.5\%	9.3\%	9.3\%	11.0\%	11.5\%	10.4\%	10.9\%	10.6\%	10.7\%	11.5\%	11.5\%	Return	on Com Equity	13.0\%	
$\begin{array}{lll}\begin{array}{c}\text { CURRENT POSITION } \\ \text { (SMILL.) }\end{array} & 2018 & 2019\end{array}$						2.7%	2.5%	2.4%	2.4\% 74\%	3.9\%	4.4\%	3.4\%	4.0\%	3.8\%	4.0\%	5.0\% 56%	5.0\%	Retain	to Com Eq	5.0\% 59%	

							73	74\%	748	64\%	62\%	67\%	
Acco			4.8		5.0	BUSINESS: The York Water Company is the oldest investor-owned regulated water utility in the United States. It has operated continuously since 1816. As of December 31, 2019, the company's average daily availability was 35.4 million gallons and its service territory had an estimated population of 201,000 . Has more than 71,400 customers. Residential customers accounted for 65% of 2019 reve-							
Inven				1.0									
			3.3	4.0	41								
Curren				9.4	10.2								
Accts Payable Debt Due Other Current Liab.			30	3.4									
						York Water delivered strong top- and bottom-line performances in the second quarter. Indeed, the Pennsylvaniabased regulated water utility held up considerably well during the height of the pandemic, and should continue to thrive							
ANNUAL RATES of change (per sh) Revenues "Cash Flow" Earnings Dividends Book Value			Past Est'd '17-'19 5Yrs. to 23.25 2.5% 5.2% 5.5% 7.0% 6.0% 7.0% 4.0% 6.0% 4.0% 4.0%										
$\begin{aligned} & \text { Cal- } \\ & \text { endar } \end{aligned}$	QUARTERLY REVENUES ($\$$ mill.) Mar. 31 Jun. 30 Sep. 30 Dec. 31					as the economy appears to be entering recovery mode. The company generated $\$ 13.3$ million in revenues in the June peri-							
					Yea								
2017		12.3	12.7	12.3		od, up 21% from the previous-year figure, while earnings clocked in at $\$ 0.32$ a share, up about 14% year over year. Underpinning the advances was a combination of							
		2.0	12.7	12.1									
		13.0	13.7	13.1									
	12.9	13.3	14.0	13.3									
	13.0	13.5	14.5	3.5		cent rate hikes, increased water conmption per residential customers (largedue to more people staying and working							
	EARNINGS PER SHARE A Mar. 31 Jun. 30 Sep. 30 Dec. 31												
2017	20	23	31	27	1.01	from home amidst lingering health concerns), as well as growth in its customer base (both acquisition and homebuying related). Moreover, share profits were							
2018	20	26	29	29	1.04								
2019	. 22	28	. 35	26	1.11								
			. 37	32									
		. 35	,	. 35									
endar	QUARTERLY DIVIDENDS					boosted by lower taxes tied to greater tangible property deductions and a declining interest expense.							
	Mar. 31	n. 30	ep. 30	ec. 31	Yea								
2016	. 1555	. 1555	. 1555	1602									
2017	. 1602	. 1602	1602	. 1606									
2018	. 1666	. 1666	1666	. 1733	673								
2019	. 1733	. 1733	1733										

nues; commercial and industrial (28\%); other (7\%). It also provides sewer billing services. Incorporated: PA. York had 106 full-time em ployees at 12/31/19. President/Chief Executive Officer: J.T. Hand Officers/directors own 1.2\% of the common stock (3/20 proxy). Ad dress: 130 East Market Street, York, Pennsylvania 17401. Telephone: (717) 845-3601. Internet: www.yorkwater.com.
projections stem partly from periodically rising operation and maintenance expenses. On top of that, as much of the pop ulation slowly returns to work and school, household water consumption could take a slight step back, despite an increase in general hygiene practices.
True to form, infrastructure upgrades are on tap over the pull to mid decade. York invested $\$ 9.0$ million year to date on various replacements and water system improvements, and expects to spend an additional $\$ 12.0$ million over the next six months on main extensions wastewater treatment plant expansions, and broad pipe and service line upgrades. Infrastructure spending ought to considerably ramp up over the coming years, as the company focuses on delivering safe water to its growing customer base.
The equity is favorably ranked (2) for relative year-ahead price performance. That said, although York shares have slipped modestly in price since our mid-July review, total return potential out to 2023-2025 still leaves much to be desired at the recent quotation.
Nicholas P. Patrikis
October 9, 2020
(A) Diluted earnings. Next earnings report due $\begin{aligned} & \text { (C) In millions, adjusted for split. }\end{aligned}$
late October
(B) Dividends historically paid in late February,

June, September, and December.
Company's Financial Strength Stock's Price Stability Price Growth Persistence
© 2020 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or produc

Aquarion Water Company of New Hampshire, Inc. Summary of Risk Premium Models for the Proxy Group of Seven Water Companies

Notes:

(1) From page 2 of this Attachment.
(2) From page 3 of this Attachment.

Aquarion Water Company of New Hampshire, Inc.
 Indicated ROE
 Derived by the Predictive Risk Premium Model (1)

	[1]	[2]	[3]	[4]	[5]	[6]	[7]
$\underline{\text { Proxy Group of Seven Water Companies }}$	LT Average Predicted Variance	Spot Predicted Variance	Recommended Variance	GARCH Coefficient	$\begin{gathered} \text { Predicted } \\ \text { Risk } \\ \text { Premium (2) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Risk-Free } \\ \text { Rate (3) } \\ \hline \end{gathered}$	Indicated ROE (4)
American States Water Company	0.38\%	0.37\%	0.38\%	1.8583	8.73\%	2.11\%	10.84\%
American Water Works Company, Inc.	0.23\%	0.15\%	0.19\%	5.9529	14.28\%	2.11\%	NMF
California Water Service Group	0.32\%	0.29\%	0.30\%	1.8743	7.05\%	2.11\%	9.16\%
Essential Utilities, Inc.	0.44\%	0.44\%	0.44\%	2.2287	12.45\%	2.11\%	14.56\%
Middlesex Water Company	0.30\%	0.30\%	0.30\%	2.1314	7.91\%	2.11\%	10.02\%
SJW Group	0.42\%	0.37\%	0.39\%	1.5198	7.44\%	2.11\%	9.55\%
York Water Company	0.45\%	0.37\%	0.41\%	2.1147	10.95\%	2.11\%	13.06\%
						Average	11.20\%
						Median	10.43\%
					Average of Me	and Median	10.82\%

NMF $=$ Not Meaningful Figure
Notes:
(1) The Predictive Risk Premium Model uses historical data to generate a predicted variance and a GARCH coefficient. The historical data used are the equity risk premiums for the first available trading month as reported by Bloomberg Professional Service.
(2) $\left(1+(\text { Column }[3] * \text { Column }[4])^{\wedge 12}\right)-1$.
(3) From note 2 on page 2 of Attachment DWD-5.
(4) Column [5] + Column [6].

Aquarion Water Company of New Hampshire, Inc. Indicated Common Equity Cost Rate Through Use of a Risk Premium Model
 Using an Adjusted Total Market Approach

Line No.		Proxy Group of Seven Water Companies
1.	Prospective Yield on Aaa Rated Corporate Bonds (1)	2.96 \%
2.	Adjustment to Reflect Yield Spread Between Aaa Rated Corporate Bonds and A2 Rated Public Utility Bonds	0.54 (2)
3.	Adjusted Prospective Yield on A2 Rated Public Utility Bonds	3.50 \%
4.	Adjustment to Reflect Bond Rating Difference of Proxy Group	0.06 (3)
5.	Adjusted Prospective Bond Yield	3.56 \%
6.	Equity Risk Premium (4)	6.74
7.	Risk Premium Derived Common Equity Cost Rate	10.30 \%

Notes: (1) Consensus forecast of Moody's Aaa Rated Corporate bonds from Blue Chip Financial Forecasts (see pages 10-11 of this Attachment).
(2) The average yield spread of A2 rated public utility bonds over Aaa rated corporate bonds of 0.54% from page 4 of this Attachment.
(3) Adjustment to reflect the A2/A3 Moody's LT issuer rating of the Utility Proxy Group as shown on page 5 of this Attachment. The 0.06% upward adjustment is derived by taking $1 / 6$ of the spread between A2 and Baa2 Public Utility Bonds ($1 / 6^{*} 0.34 \%=0.06 \%$) as derived from page 4 of this Attachment.
(4) From page 7 of this Attachment.

Aquarion Water Company of New Hampshire, Inc. Interest Rates and Bond Spreads for Moody's Corporate and Public Utility Bonds

Selected Bond Yields
[1]
[2]
[3]

A2 Rated
$\left.\begin{array}{lcccc} & \begin{array}{c}\text { Aaa Rated } \\ \text { Corporate Bond }\end{array} & & \begin{array}{c}\text { A2 Rated } \\ \text { Public Utility } \\ \text { Bond }\end{array} & \end{array} \begin{array}{c}\text { Baa2 Rated Public } \\ \text { Utility Bond }\end{array}\right]$

Selected Bond Spreads
A2 Rated Public Utility Bonds Over Aaa Rated Corporate Bonds:

$$
0.54 \%(1)
$$

Baa2 Rated Public Utility Bonds Over A2 Rated Public Utility Bonds:

$$
0.34 \%(2)
$$

Notes:
(1) Column [2] - Column [1].
(2) Column [3] - Column [2].

Source of Information:
Bloomberg Professional Service

Aquarion Water Company of New Hampshire, Inc.
 Comparison of Long-Term Issuer Ratings for Proxy Group of Seven Water Companies

Notes:
(1) From page 6 of this Attachment.
(2) Ratings that of Golden State Water Company.
(3) Ratings that of New Jersey and Pennsylvania American Water Companies.
(4) Ratings that of California Water Service Company.
(5) Ratings that of Aqua Pennsylvania, Inc.
(6) Ratings that of San Jose Water Company and The Connecticut Water Company

Source Information: Moody's Investors Service
Standard \& Poor's Global Utilities Rating Service

Numerical Assignment for
 Moody's and Standard \& Poor's Bond Ratings

Moody's Bond Rating	Numerical Bond Weighting	Standard \& Poor's Bond Rating
Aaa	1	AAA
Aa1	2	
Aa2	3	AA+
Aa3	4	AA
		AA-
A1	5	A+
A2	6	A
A3	7	A-
	8	BBB+
Baa1	9	BBB
Baa2	10	BBB-
Baa3		
Ba1	11	BB+
Ba2	12	BB
Ba3	13	BB-
B1	14	B+
B2	15	B
B3	16	B-

Aquarion Water Company of New Hampshire, Inc. Judgment of Equity Risk Premium for the Proxy Group of Seven Water Companies

Line No.		Proxy Group of Seven Water Companies
1.	Calculated equity risk premium based on the total market using the beta approach (1)	
2.	Mean equity risk premium based on a study using the holding period returns of public utilities with A2 rated bonds (2)	7.72%

Notes: (1) From page 8 of this Attachment.
(2) From page 12 of this Attachment.

Aquarion Water Company of New Hampshire, Inc.
Derivation of Equity Risk Premium Based on the Total Market Approach
Using the Beta for the Proxy Group of Seven Water Companies

Line No.	Equity Risk Premium Measure	Proxy Group of Seven Water Companies
Ibbotson-Based Equity Risk Premiums:		
1.	Ibbotson Equity Risk Premium (1)	5.78 \%
2.	Regression on Ibbotson Risk Premium Data (2)	9.42
3.	Ibbotson Equity Risk Premium based on PRPM (3)	9.54
4.	Equity Risk Premium Based on Value Line Summary and Index (4)	10.73
5.	Equity Risk Premium Based on Value Line S\&P 500 Companies (5)	10.99
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6)	10.74
7.	Conclusion of Equity Risk Premium	9.53 \%
8.	Adjusted Beta (7)	0.81
9.	Forecasted Equity Risk Premium	7.72 \%

Notes provided on page 9 of this Attachment.

Aquarion Water Company of New Hampshire, Inc.
Derivation of Equity Risk Premium Based on the Total Market Approach Using the Beta for the Proxy Group of Seven Water Companies

Notes:
(1) Based on the arithmetic mean historical monthly returns on large company common stocks from Ibbotson® SBBI® 2020 Market Report minus the arithmetic mean monthly yield of Moody's average Aaa and Aa2 corporate bonds from 1926-2019.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of large company common stocks relative to Moody's average Aaa and Aa rated corporate bond yields from 1928-2019 referenced in Note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is discussed in the accompanying direct testimony. The Ibbotson equity risk premium based on the PRPM is derived by applying the PRPM to the monthly risk premiums between Ibbotson large company common stock monthly returns and average Aaa and Aa2 corporate monthly bond yields, from January 1928 through September 2020.
(4) The equity risk premium based on the Value Line Summary and Index is derived by subtracting the average consensus forecast of Aaa corporate bonds of 2.96% (from page 3 of this Attachment) from the projected 3-5 year total annual market return of 13.69% (described fully in note 1 on page 2 of Attachment DWD-5).
(5) Using data from Value Line for the S\&P 500, an expected total return of 13.95% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of 2.96% results in an expected equity risk premium of 10.99%.
(6) Using data from the Bloomberg Professional Service for the S\&P 500, an expected total return of 13.70% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of 2.96% results in an expected equity risk premium of 10.74%.
(7) Average of mean and median beta from Attachment DWD-5.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2020 SBBI Yearbook, John Wiley \& Sons, Inc. Industrial Manual and Mergent Bond Record Monthly Update.
Value Line Summary and Index
Blue Chip Financial Forecasts, October 1, 2020 and June 1, 2020
Bloomberg Professional Service

Consensus Forecasts of U.S. Interest Rates and Key Assumptions

Interest Rates

Federal Funds Rate Prime Rate
LIBOR, 3-mo.
Commercial Paper, 1-mo.
Treasury bill, 3-mo.
Treasury bill, 6-mo.
Treasury bill, 1 yr.
Treasury note, 2 yr.
Treasury note, 5 yr.
Treasury note, 10 yr .
Treasury note, 30 yr .
Corporate Aaa bond
Corporate Baa bond
State \& Local bonds
Home mortgage rate

Key Assumptions
Fed's AFE \$ Index
Real GDP
GDP Price Index
Consumer Price Index

-----------------------------------Historage For Week Ending---1verage For Month--- Latest Qtr								Consensus Forecasts-Quarterly Avg.					
								4Q	$1 Q$	2Q	3Q	4Q	1 Q
Sep 25	Sep 18	Sep 11	Sep 4	Aug	Jul	Jun	3Q 2020*	$\underline{2020}$	2021	2021	2021	2021	$\underline{2022}$
0.09	0.09	0.09	0.09	0.10	0.09	0.08	0.09	0.1	0.1	0.1	0.1	0.1	0.1
3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.3	3.3	3.3	3.3	3.3	3.3
0.22	0.23	0.25	0.25	0.25	0.27	0.31	0.26	0.3	0.3	0.3	0.3	0.4	0.4
0.10	0.10	0.09	0.09	0.09	0.11	0.12	0.10	0.2	0.2	0.2	0.2	0.2	0.2
0.10	0.11	0.12	0.11	0.10	0.13	0.16	0.12	0.1	0.1	0.1	0.2	0.2	0.2
0.11	0.12	0.13	0.12	0.12	0.14	0.18	0.13	0.1	0.2	0.2	0.2	0.2	0.2
0.12	0.13	0.14	0.12	0.13	0.15	0.18	0.14	0.2	0.2	0.2	0.2	0.3	0.3
0.13	0.14	0.14	0.14	0.14	0.15	0.19	0.14	0.2	0.2	0.3	0.3	0.3	0.4
0.27	0.28	0.27	0.27	0.27	0.28	0.34	0.27	0.3	0.4	0.5	0.5	0.6	0.7
0.67	0.69	0.69	0.68	0.65	0.62	0.73	0.65	0.8	0.8	0.9	1.0	1.1	1.1
1.41	1.44	1.43	1.42	1.36	1.31	1.49	1.36	1.5	1.6	1.6	1.7	1.8	1.9
2.56	2.55	2.57	2.54	2.48	2.43	2.73	2.49	2.3	2.4	2.5	2.6	2.7	2.7
3.20	3.18	3.21	3.17	3.09	3.12	3.44	3.14	3.5	3.6	3.6	3.7	3.7	3.8
2.91	2.92	2.92	2.93	2.88	2.99	3.10	2.94	2.4	2.4	2.5	2.6	2.6	2.6
2.90	2.87	2.86	2.93	2.94	3.02	3.16	2.95	3.0	3.0	3.1	3.1	3.2	3.2
			-Histo						nsensu	Fore	casts-	Quarter	
4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1 Q	2 Q	3Q	4 Q	1 Q
$\underline{2018}$	$\underline{2019}$	2019	$\underline{2019}$	$\underline{2019}$	2020	$\underline{2020}$	2020**	2020	2021	2021	2021	2021	2022
109.4	109.4	110.3	110.5	110.3	111.2	112.4	107.2	107.2	107.1	106.9	106.3	106.2	106.5
1.3	2.9	1.5	2.6	2.4	-5.0	-31.7	21.5	4.6	4.3	4.0	3.8	3.4	3.1
1.8	1.2	2.5	1.5	1.4	1.4	-2.0	1.9	1.5	1.7	1.5	1.7	1.7	1.8
1.3	0.9	3.0	1.8	2.4	1.2	-3.5	3.2	2.1	1.9	1.8	2.0	2.0	2.0

Forecasts for interest rates and the Federal Reserve's Major Currency Index represent averages for the quarter. Forecasts for Real GDP, GDP Price Index and Consumer Price Index are seasonally-adjusted annual rates of change (saar). Individual panel members' forecasts are on pages 4 through 9. Historical data: Treasury rates from the Federal Reserve Board's H.15; AAA-AA and A-BBB corporate bond yields from Bank of America-Merrill Lynch and are 15+ years, yield to maturity; State and local bond yields from Bank of America-Merrill Lynch, A-rated, yield to maturity; Mortgage rates from Freddie Mac, 30-year, fixed; LIBOR quotes from Intercontinental Exchange. All interest rate data are sourced from Haver Analytics. Historical data for Fed's Major Currency Index are from FRSR H.10. Historical data for Real GDP and GDP Chained Price Index are from the Bureau of Economic Analysis (BEA). Consumer Price Index (CPI) history is from the Department of Labor's Bureau of Labor Statistics (BLS). *Interest rate data for 3Q 2020 based on historical data through the week ended September 23. **Data for 3Q 2020 for the Fed's AFE $\$$ Index based on data through the week ended September 25. Figures for 3Q 2020 Real GDP, GDP Chained Price Index and Consumer Price Index are consensus forecasts from the September 2020 survey.

Long-Range Survey:

The table below contains the results of our twice-annual long-range CONSENSUS survey. There are also Top 10 and Bottom 10 averages for each variable. Shown are consensus estimates for the years 2021 through 2026 and averages for the five-year periods 2022-2026 and 2027-2031. Apply these projections cautiously. Few if any economic, demographic and political forces can be evaluated accurately over such long time spans.

1. Federal Funds Rate	consensus	2021	Average For The Year				2026	Five-Year Averages	
			2022	2023	2024	2025		2022-2026	2027-2031
		0.2	0.4	1.0	1.6	1.9	2.1	1.4	2.3
2. Prime Rate	Top 10 Average	0.4	0.8	1.6	2.2	2.5	2.7	1.9	2.8
	Bottom 10 Average	0.1	0.1	0.4	1.0	1.3	1.5	0.9	1.7
	consensus	3.4	3.6	4.1	4.7	5.0	5.2	4.5	5.4
	Top 10 Average	3.5	3.9	4.6	5.3	5.5	5.7	5.0	5.9
3. LIBOR, 3-Mo.	Bottom 10 Average	3.3	3.3	3.7	4.2	4.5	4.7	4.1	4.9
	consensus	0.6	0.9	1.4	2.0	2.3	2.4	1.8	2.6
	Top 10 Average	0.8	1.3	1.9	2.5	2.7	3.0	2.3	3.1
4. Commercial Paper, 1-Mo	Bottom 10 Average	0.4	0.5	0.9	1.6	1.9	2.0	1.4	2.1
	consensus	0.6	0.9	1.4	2.0	2.2	2.3	1.7	2.6
	Top 10 Average	0.7	1.2	1.8	2.3	2.6	2.8	2.1	3.0
5. Treasury Bill Yield, 3-Mo	Bottom 10 Average	0.3	0.5	1.1	1.6	1.9	2.0	1.4	2.2
	consensus	0.2	0.5	1.1	1.6	1.9	2.1	1.4	2.3
	Top 10 Average	0.4	0.9	1.6	2.2	2.4	2.6	1.9	2.8
6. Treasury Bill Yield, 6-Mo	Bottom 10 Average	0.1	0.2	0.5	1.1	1.4	1.6	0.9	1.8
	consensus	0.3	0.6	1.1	1.7	2.0	2.2	1.5	2.5
	Top 10 Average	0.4	0.9	1.7	2.3	2.6	2.7	2.0	3.0
7. Treasury Bill Yield, 1-Yr	Bottom 10 Average	0.2	0.2	0.6	1.2	1.5	1.7	1.1	1.9
	consensus	0.4	0.7	1.3	1.8	2.1	2.3	1.7	2.6
	Top 10 Average	0.5	1.1	1.8	2.4	2.7	2.9	2.2	3.1
8. Treasury Note Yield, 2-Yr	Bottom 10 Average	0.2	0.3	0.7	1.3	1.6	1.8	1.1	2.0
	consensus	0.5	0.9	1.5	2.0	2.3	2.5	1.8	2.7
	Top 10 Average	0.8	1.3	2.0	2.5	2.9	3.0	2.4	3.3
9. Treasury Note Yield, 5-Yr	Bottom 10 Average	0.3	0.4	0.9	1.4	1.7	2.0	1.3	2.2
	CONSENSUS	0.7	1.1	1.7	2.2	2.5	2.7	2.0	2.9
	Top 10 Average	1.1	1.6	2.3	2.8	3.1	3.3	2.6	3.5
10. Treasury Note Yield, 10-Yr	Bottom 10 Average	0.5	0.7	1.2	1.6	1.8	2.1	1.5	2.3
	consensus	1.2	1.5	2.1	2.5	2.7	2.9	2.3	3.1
	Top 10 Average	1.5	2.0	2.6	3.1	3.3	3.5	2.9	3.8
11. Treasury Bond Yield, 30-Yr	Bottom 10 Average	0.8	1.1	1.6	1.9	2.1	2.2	1.8	2.5
	consensus	1.8	2.2	2.7	3.1	3.3	3.5	3.0	3.8
	Top 10 Average	2.2	2.7	3.3	3.7	3.9	4.1	3.5	4.4
12. Corporate Aaa Bond Yield	Bottom 10 Average	1.4	1.7	2.2	2.6	2.8	2.9	2.4	3.1
	consensus	2.8	3.2	3.6	4.0	4.2	4.3	3.9	4.6
	Top 10 Average	3.1	3.6	4.2	4.6	4.7	4.8	4.4	5.1
13. Corporate Baa Bond Yield	Bottom 10 Average	2.4	2.7	3.1	3.5	3.7	3.8	3.4	4.2
	consensus	4.1	4.5	4.9	5.2	5.3	5.4	5.0	5.7
	Top 10 Average	4.6	5.0	5.4	5.7	5.8	6.0	5.6	6.2
14. State \& Local Bonds Yield	Bottom 10 Average	3.6	3.9	4.3	4.6	4.7	4.8	4.4	5.2
	consensus	2.6	3.0	3.5	3.7	3.8	3.8	3.6	4.1
	Top 10 Average	3.0	3.3	3.9	4.2	4.3	4.4	4.0	4.6
15. Home Mortgage Rate	Bottom 10 Average	2.3	2.6	2.9	3.2	3.2	3.3	3.0	3.7
	Consensus	3.4	3.6	4.0	4.4	4.5	4.7	4.2	4.9
	Top 10 Average	3.8	4.0	4.5	4.8	5.0	5.2	4.7	5.5
A. Fed's AFE Nominal \$ Index	Bottom 10 Average	3.0	3.2	3.5	3.9	4.1	4.1	3.7	4.4
	consensus	112.8	112.6	112.5	111.8	111.4	111.0	111.9	110.6
	Top 10 Average	114.1	114.5	114.1	113.8	113.5	113.4	113.9	113.9
	Bottom 10 Average	111.7	110.7	110.7	110.2	109.5	108.7	110.0	107.6
B. Real GDP				r-Over-	\% Chan			Five-Year Averages	
		2021	2022	2023	2024	2025	2026	2022-2026	2027-2031
	consensus	3.2	3.2	2.4	2.2	2.1	2.0	2.4	2.1
	Top 10 Average	5.7	4.3	2.9	2.5	2.3	2.3	2.9	2.4
C. GDP Chained Price Index	Bottom 10 Average	0.5	2.2	1.9	1.9	1.8	1.8	1.9	1.8
	consensus	1.1	1.7	1.9	2.0	2.0	2.0	1.9	2.0
	Top 10 Average	1.8	2.2	2.2	2.2	2.3	2.2	2.2	2.2
D. Consumer Price Index	Bottom 10 Average	0.3	1.3	1.6	1.8	1.8	1.8	1.7	1.9
	consensus	1.3	2.0	2.1	2.1	2.1	2.1	2.1	2.2
	Top 10 Average	2.2	2.5	2.3	2.3	2.4	2.3	2.4	2.4
	Bottom 10 Average	0.4	1.5	1.8	1.8	1.9	1.9	1.8	2.0

Aquarion Water Company of New Hampshire, Inc. Derivation of Mean Equity Risk Premium Based Studies Using Holding Period Returns and Projected Market Appreciation of the S\&P Utility Index

Line No.	Equity Risk Premium based on S\&P Utility Index Holding Period Returns (1):	Implied Equity Risk Premium
1.	Historical Equity Risk Premium	4.21 \%
2.	Regression of Historical Equity Risk Premium (2)	6.88
3.	Forecasted Equity Risk Premium Based on PRPM (3)	5.53
4.	Forecasted Equity Risk Premium based on Projected Total Return on the S\&P Utilities Index (Value Line Data) (4)	6.68
5.	Forecasted Equity Risk Premium based on Projected Total Return on the S\&P Utilities Index (Bloomberg Data) (5)	5.44
6.	Average Equity Risk Premium (6)	5.75 \%

Notes: (1) Based on S\&P Public Utility Index monthly total returns and Moody's Public Utility Bond average monthly yields from 1928-2019. Holding period returns are calculated based upon income received (dividends and interest) plus the relative change in the market value of a security over a one-year holding period.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of the S\&P Utility Index relative to Moody's A2 rated public utility bond yields from 1928-2019 referenced in note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is applied to the risk premium of the monthly total returns of the S\&P Utility Index and the monthly yields on Moody's A2 rated public utility bonds from January 1928 - September 2020.
(4) Using data from Value Line for the S\&P Utilities Index, an expected return of 10.18% was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of 3.50%, calculated on line 3 of page 3 of this Attachment results in an equity risk premium of $6.68 \% .(10.18 \%-3.50 \%=6.68 \%)$
(5) Using data from Bloomberg Professional Service for the S\&P Utilities Index, an expected return of 8.94% was derived based on expected dividend yields and longterm growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of 3.50%, calculated on line 3 of page 3 of this Attachment results in an equity risk premium of 5.44%. $(8.94 \%-3.50 \%=$ 5.44\%)
(6) Average of lines 1 through 5.

Docket No. DW 20-184
 Exhibit 12

Aquarion Water Company of New Hampshire, Inc.
Indicated Common Equity Cost Rate Through Use
of the Traditional Capital Asset Pricing Model (CAPM) and Empirical Capital Asset Pricing Model (ECAPM)

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Proxy Group of Seven Water Companies	Value Line Adjusted \qquad Beta	Bloomberg Adjusted Beta	Average Beta	Market Risk Premium (1)	Risk-Free Rate (2)	Traditional CAPM Cost Rate	ECAPM Cost Rate	Indicated Common Equity Cost Rate (3)
American States Water Company	0.65	0.56	0.60	10.48 \%	2.11 \%	8.40 \%	9.44 \%	8.92 \%
American Water Works Company, Inc.	0.85	0.99	0.92	10.48	2.11	11.75	11.96	11.85
California Water Service Group	0.65	0.56	0.60	10.48	2.11	8.40	9.44	8.92
Essential Utilities, Inc.	0.90	0.97	0.93	10.48	2.11	11.85	12.04	11.95
Middlesex Water Company	0.70	0.77	0.74	10.48	2.11	9.86	10.54	10.20
SJW Group	0.80	0.88	0.84	10.48	2.11	10.91	11.33	11.12
York Water Company	0.80	0.92	0.86	10.48	2.11	11.12	11.49	11.30
Mean			0.78			10.33 \%	10.89 \%	10.61 \%
Median			0.84			10.91 \%	11.33 \%	11.12 \%
Average of Mean and Median			0.81			10.62	11.11	10.87 \%

Notes on page 2 of this Attachment.

Aquarion Water Company of New Hampshire, Inc. Basis of Selection of the Group of Non-Price Regulated Companies Comparable in Total Risk to the Utility Proxy Group

The criteria for selection of the Non-Price Regulated Proxy Group was that the nonprice regulated companies be domestic and reported in Value Line Investment Survey (Standard Edition).

The Non-Price Regulated Proxy Group was then selected based on the unadjusted beta range of $0.45-0.75$ and residual standard error of the regression range of 2.9166-3.4786 of the Utility Proxy Group.

These ranges are based upon plus or minus two standard deviations of the unadjusted beta and standard error of the regression. Plus or minus two standard deviations captures 95.50% of the distribution of unadjusted betas and residual standard errors of the regression.

The standard deviation of the Utility Proxy Group's residual standard error of the regression is 0.1405 . The standard deviation of the standard error of the regression is calculated as follows:

Standard Deviation of the Std. Err. of the Regr. = Standard Error of the Regression $\sqrt{2 N}$
where: $\mathrm{N}=$ number of observations. Since Value Line betas are derived from weekly price change observations over a period of five years, $\mathrm{N}=259$

$$
\text { Thus, } 0.1405=\frac{3.1976}{\sqrt{518}}=\frac{3.1976}{22.7596}
$$

Aquarion Water Company of New Hampshire, Inc.
Basis of Selection of Comparable Risk
Domestic Non-Price Regulated Companies

	[1]	[2]	[3]	[4]
Proxy Group of Seven Water Companies	Value Line Adjusted Beta	Unadjusted Beta	Residual Standard Error of the Regression	Standard Deviation of Beta
American States Water Company	0.65	0.42	2.7018	0.0652
American Water Works Company, Inc.	0.85	0.70	3.1629	0.0763
California Water Service Group	0.65	0.40	3.1081	0.0750
Essential Utilities, Inc.	0.90	0.83	2.7162	0.0655
Middlesex Water Company	0.70	0.52	3.4887	0.0841
SJW Group	0.80	0.67	3.5594	0.0858
York Water Company	0.80	0.64	3.6461	0.0879
Average	0.76	0.60	3.1976	0.0771
Beta Range ($+/-2$ std. Devs. of Beta)	0.45	0.75		
2 std. Devs. of Beta	0.15			
Residual Std. Err. Range ($+/-2$ std.				
Devs. of the Residual Std. Err.)	2.9166	3.4786		
Std. dev. of the Res. Std. Err.	0.1405			
2 std. devs. of the Res. Std. Err.	0.2810			

Aquarion Water Company of New Hampshire, Inc.
 Proxy Group of Non-Price Regulated Companies
 Comparable in Total Risk to the
 Proxy Group of Seven Water Companies

	[1]	[2]	[3]	[4]
Proxy Group of Twenty-Three NonPrice Regulated Companies	VL Adjusted Beta	Unadjusted Beta	Residual Standard Error of the Regression	Standard Deviation of Beta
Adobe Inc.	0.80	0.68	3.2135	0.0775
Bio-Rad Labs. 'A'	0.80	0.64	3.0465	0.0735
Casey's Gen'l Stores	0.80	0.69	3.2699	0.0789
C.H. Robinson	0.70	0.49	2.9211	0.0704
salesforce.com	0.85	0.74	3.3139	0.0799
CSG Systems Int'l	0.75	0.60	3.1939	0.0770
Citrix Sys.	0.75	0.58	3.3490	0.0808
Dollar General	0.70	0.47	3.2817	0.0791
Ennis, Inc.	0.80	0.63	3.3760	0.0814
FirstCash, Inc.	0.80	0.67	3.2660	0.0788
Gen'l Mills	0.65	0.45	2.9700	0.0716
Heartland Express	0.75	0.56	3.1152	0.0751
St. Joe Corp.	0.85	0.72	2.9838	0.0720
Lancaster Colony	0.70	0.50	3.1119	0.0751
Lilly (Eli)	0.75	0.56	2.9987	0.0723
ManTech Int'l 'A'	0.85	0.71	3.1009	0.0748
MAXIMUS Inc.	0.80	0.67	3.3500	0.0808
Smucker (J.M.)	0.65	0.45	3.0513	0.0736
Standard Motor Prod.	0.80	0.68	3.3622	0.0811
Bio-Techne Corp.	0.80	0.66	3.1657	0.0763
Tyler Technologies	0.75	0.61	3.1722	0.0765
Walgreens Boots	0.80	0.67	3.2476	0.0783
West Pharmac. Svcs.	0.80	0.68	3.1016	0.0748
Average	0.77	0.61	3.1700	0.0800
Proxy Group of Seven Water				
Companies	0.76	0.60	3.1976	0.0771
Source of Information:	Valueline Prop	tary Database	tember 2020	

Aquarion Water Company of New Hampshire, Inc.
 Summary of Cost of Equity Models Applied to
 Proxy Group of Twenty-Three Non-Price Regulated Companies
 Comparable in Total Risk to the Proxy Group of Seven Water Companies

Principal Methods		Proxy Group of Twenty-Three Non-Price Regulated Companies
Discounted Cash Flow Model (DCF) (1)		10.26 \%
Risk Premium Model (RPM) (2)		11.50
Capital Asset Pricing Model (CAPM) (3)		10.70
	Mean	10.82 \%
	Median	10.70 \%
	Median	10.76 \%

Notes:

(1) From page 2 of this Attachment.
(2) From page 3 of this Attachment.
(3) From page 6 of this Attachment.

Docket No. DW 20-184
 Exhibit 12

Aquarion Water Company of New Hampshire, Inc.
DCF Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the
Proxy Group of Seven Water Companies Proxy Group of Seven Water Companies

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Proxy Group of Twenty- Three Non-Price Regulated Companies	Average Dividend Yield	Value Line Projected Five Year Growth in EPS	Zack's Five Year Projected Growth Rate in EPS	Yahoo! Finance Projected Five Year Growth in EPS	Bloomberg Projected Five Year Growth in EPS	Average Projected Five Year Growth Rate in EPS	Adjusted Dividend Yield	Indicated Common Equity Cost Rate (1)
Adobe Inc.	\%	19.50 \%	19.00 \%	17.42 \%	16.27 \%	18.05 \%	\%	NA \%
Bio-Rad Labs. 'A'	-	11.50	NA	17.80	21.75	17.02	-	NA
Casey's Gen'l Stores	0.73	6.50	NA	5.56	16.31	9.46	0.76	10.22
C.H. Robinson	2.06	8.00	9.00	4.12	8.63	7.44	2.14	9.58
salesforce.com	-	34.50	15.70	16.72	18.85	21.44	-	NA
CSG Systems Int'1	2.25	10.00	NA	(5.00)	8.00	9.00	2.35	11.35
Citrix Sys.	1.01	9.00	7.00	9.37	9.63	8.75	1.05	9.80
Dollar General	0.71	12.00	11.10	14.79	12.89	12.70	0.76	13.46
Ennis, Inc.	5.08	3.00	NA	5.00	NA	4.00	5.18	9.18
FirstCash, Inc.	1.81	9.00	NA	(0.93)	NA	9.00	1.89	10.89
Gen'l Mills	3.28	3.00	7.50	5.05	4.37	4.98	3.36	8.34
Heartland Express	0.40	8.50	NA	5.80	NA	7.15	0.41	7.56
St. Joe Corp.	-	15.00	NA	(28.10)	NA	15.00	-	NA
Lancaster Colony	1.63	5.00	NA	3.00	NA	4.00	1.66	5.66
Lilly (Eli)	1.96	10.00	16.10	13.16	19.33	14.65	2.10	16.75
ManTech Int'l 'A'	1.78	12.00	7.40	7.02	7.36	8.45	1.86	10.31
MAXIMUS Inc.	1.53	10.00	NA	12.50	7.50	10.00	1.61	11.61
Smucker (J.M.)	3.15	3.00	2.20	0.68	(0.13)	1.96	3.18	5.14
Standard Motor Prod.	-	7.50	NA	7.00	NA	7.25	-	NA
Bio-Techne Corp.	0.50	14.00	7.00	7.00	10.45	9.61	0.52	10.13
Tyler Technologies	-	10.50	15.00	10.00	13.25	12.19	-	NA
Walgreens Boots	4.91	6.00	5.00	(5.18)	3.58	4.86	5.03	9.89
West Pharmac. Svcs.	0.23	16.00	17.40	17.40	14.94	16.43	0.25	16.68
							Mean	10.39 \%
							Median	10.13 \%
						Average of Mean and Median		10.26 \%
NA= Not Available								

NMF= Not Meaningful Figure
(1) The application of the DCF model to the domestic, non-price regluated comparable risk companies is identical to the application of the DCF to the utility proxy group. The dividend yield is derived by using the 60 day average price and the spot indicated dividend as of October 16,2020 . The dividend yield is then adjusted by $1 / 2$ the average projected growth rate in EPS, which is calculated by averaging the 5 year projected growth in EPS provided by Value Line, Bloomberg, www.zacks.com, and www.yahoo.com (excluding any negative growth rates) and then adding that growth rate to the adjusted dividend yield.

Source of Information: Value Line Investment Survey
www.zacks.com Downloaded on 10/16/2020
www.yahoo.com Downloaded on 10/16/2020
Bloomberg Professional Services

> Aquarion Water Company of New Hampshire, Inc. Indicated Common Equity Cost Rate Through Use of a Risk Premium Model Using an Adjusted Total Market Approach

Line No.		Proxy Group of Twenty-Three NonPrice Regulated Companies
1.	Prospective Yield on Baa2 Rated Corporate Bonds (1)	4.08 \%
2.	Adjustment to Reflect Proxy Group Bond Rating (2)	(0.20)
3.	Prospective Bond Yield Applicable to the Non-Price Regulated Proxy Group	3.88
4.	Equity Risk Premium (3)	7.62
5.	Risk Premium Derived Common Equity Cost Rate	11.50 \%

Notes: (1) Average forecast of Baa2 corporate bonds based upon the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts dated October 1, 2020 and June 1, 2020 (see pages 10 and 11 of Attachment DWD-4). The estimates are detailed below.

Fourth Quarter 2020	3.50%
First Quarter 2021	3.60
Second Quarter 2021	3.60
Third Quarter 2021	3.70
Fourth Quarter 2021	3.70
First Quarter 2022	3.80
2022-2026	5.00
2027-2031	5.70
Average	

(2) To reflect the Baa1 average rating of the Non-Price Regulated Proxy Group, the prosepctive yield on Baa2 corporate bonds must be adjusted downward by $1 / 3$ of the spread between A2 and Baa2 corporate bond yields as shown below:

	A2 Corp. Bond Yield		Corp. Yield		Spread
Sep-2020	2.79	\%	3.36	\%	0.57
Aug-2020	2.68		3.27		0.59
Jul-2020	2.69		3.31		0.62
	Average yield spread				0.59
	$1 / 3$ of spread				0.20

(3) From page 5 of this Attachment.

Aquarion Water Company of New Hampshire, Inc.
 Comparison of Long-Term Issuer Ratings for the
 Proxy Group of Twenty-Three Non-Price Regulated Companies of Comparable risk to the Proxy Group of Seven Water Companies

Moody's
Long-Term Issuer Rating October 2020

Long-			
Term		Long-Term	
Issuer	Numerical	Issuer	Numerical
Rating	Weighting (1)	Rating	Weighting (1)
A2	6.0	A	6.0
Baa2	9.0	BBB	9.0
NR	--	NR	--
Baa2	9.0	BBB+	8.0
A2	6.0	A	6.0
NR	--	BB+	11.0
NR	--	BBB	9.0
Baa2	9.0	BBB	9.0
NR	--	NR	--
Ba1	11.0	BB	12.0
Baa2	9.0	BBB	9.0
NR	--	NR	--
NR	--	NR	--
NR	--	NR	--
A2	6.0	A+	5.0
WR	--	BB+	11.0
NR	--	NR	--
Baa2	9.0	BBB	9.0
NR	--	NR	--
NR	--	NR	--
NR	--	NR	--
Baa2	9.0	BBB	9.0
NR	--	NR	--
Baa1	8.3	BBB	8.7

Notes:
(1) From page 6 of Attachment DWD-4.

Source of Information:
Bloomberg Professional Services

Aquarion Water Company of New Hampshire, Inc.
Derivation of Equity Risk Premium Based on the Total Market Approach Using the Beta for
Proxy Group of Twenty-Three Non-Price Regulated Companies of Comparable risk to the Proxy Group of Seven Water Companies

Line No.	Equity Risk Premium Measure	Proxy Group of Twenty-Three Non- Price Regulated Companies
Ibbotson-Based Equity Risk Premiums:		
1.	Ibbotson Equity Risk Premium (1)	5.78 \%
2.	Regression on Ibbotson Risk Premium Data (2)	9.42
3.	Ibbotson Equity Risk Premium based on PRPM (3)	9.54
4.	Equity Risk Premium Based on Value Line Summary and Index (4)	10.73
5	Equity Risk Premium Based on Value Line S\&P 500 Companies (5)	10.99
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6)	10.74
7.	Conclusion of Equity Risk Premium	9.53 \%
8.	Adjusted Beta (7)	0.80
9.	Forecasted Equity Risk Premium	7.62 \%

Notes:
(1) From note 1 of page 9 of Attachment DWD-4.
(2) From note 2 of page 9 of Attachment DWD-4.
(3) From note 3 of page 9 of Attachment DWD-4.
(4) From note 4 of page 9 of Attachment DWD-4.
(5) From note 5 of page 9 of Attachment DWD-4.
(6) From note 6 of page 9 of Attachment DWD-4.
(7) Average of mean and median beta from page 6 of this Attachment.

Sources of Information:
Stocks, Bonds, Bills, and Inflation - 2020 SBBI Yearbook, John Wiley \& Sons, Inc.
Value Line Summary and Index
Blue Chip Financial Forecasts, October 1, 2020 and June 1, 2020
Bloomberg Professional Services

Docket No. DW 20-184
 Exhibit 12

Aquarion Water Company of New Hampshire, Inc.
Traditional CAPM and ECAPM Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the
Proxy Group of Seven Water Companies

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Proxy Group of Twenty-Three NonPrice Regulated Companies	Value Line Adjusted Beta	$\begin{gathered} \text { Bloomberg } \\ \text { Beta } \\ \hline \end{gathered}$	Average Beta	Market Risk Premium (1)	Risk-Free Rate (2)	Traditional CAPM Cost Rate	ECAPM Cost Rate	Indicated Common Equity Cost Rate (3)
Adobe Inc.	0.85	0.86	0.86	10.48 \%	2.11 \%	11.12 \%	11.49 \%	11.30 \%
Bio-Rad Labs. 'A'	0.80	0.72	0.76	10.48	2.11	10.07	10.70	10.39
Casey's Gen'l Stores	0.80	0.86	0.83	10.48	2.11	10.81	11.25	11.03
C.H. Robinson	0.70	0.64	0.67	10.48	2.11	9.13	9.99	9.56
salesforce.com	0.85	1.05	0.95	10.48	2.11	12.06	12.19	12.13
CSG Systems Int'l	0.75	0.89	0.82	10.48	2.11	10.70	11.17	10.94
Citrix Sys.	0.80	0.64	0.72	10.48	2.11	9.65	10.39	10.02
Dollar General	0.70	0.68	0.69	10.48	2.11	9.34	10.15	9.75
Ennis, Inc.	0.80	0.79	0.79	10.48	2.11	10.39	10.94	10.66
FirstCash, Inc.	0.80	0.98	0.89	10.48	2.11	11.44	11.72	11.58
Gen'l Mills	0.70	0.50	0.60	10.48	2.11	8.40	9.44	8.92
Heartland Express	0.75	0.81	0.78	10.48	2.11	10.28	10.86	10.57
St. Joe Corp.	0.85	1.01	0.93	10.48	2.11	11.85	12.04	11.95
Lancaster Colony	0.65	0.64	0.64	10.48	2.11	8.82	9.76	9.29
Lilly (Eli)	0.75	0.73	0.74	10.48	2.11	9.86	10.54	10.20
ManTech Int'l 'A'	0.85	1.09	0.97	10.48	2.11	12.27	12.35	12.31
MAXIMUS Inc.	0.80	0.90	0.85	10.48	2.11	11.02	11.41	11.21
Smucker (J.M.)	0.65	0.52	0.58	10.48	2.11	8.19	9.29	8.74
Standard Motor Prod.	0.80	0.94	0.87	10.48	2.11	11.23	11.57	11.40
Bio-Techne Corp.	0.80	0.81	0.81	10.48	2.11	10.60	11.09	10.85
Tyler Technologies	0.80	0.75	0.78	10.48	2.11	10.28	10.86	10.57
Walgreens Boots	0.80	0.79	0.80	10.48	2.11	10.49	11.02	10.75
West Pharmac. Svcs.	0.80	0.83	0.81	10.48	2.11	10.60	11.09	10.85
Mean			0.79			10.37 \%	10.93 \%	10.65 \%
Median			0.80			10.49 \%	11.02 \%	10.75 \%
Average of Mean and Median			0.80			10.43 \%	10.98 \%	10.70 \%

Notes:
(1) From Attachment DWD-5, note 1.
2) From Attachment DWD-5, note 2
(3) Average of CAPM and ECAPM cost rates.

Aquarion Water Company of New Hampshire, Inc.
 Derivation of Investment Risk Adjustment Based upon
 Ibbotson Associates' Size Premia for the Decile Portfolios of the NYSE/AMEX/NASDAQ

Docket No. DW 20-184
 Exhibit 12

Aquarion Water Company of New Hampshire, Inc.

Market Capitalization of Aquarion Water Company of New Hampshire, Inc. and the Proxy Group of Seven Water Companies

Company	Exchange	[1]	[2]		[3]		[4]		[5]		[6]	
		Common Stock Shares Outstanding at Fiscal Year End 2019	Book Value per Share at Fiscal Year End 2019 (1)		Total Common Equity at Fiscal Year End 2019		Closing Stock Market Price on October 16, 2020		Market-toBook Ratio on October 16, 2020 (2)		Market Capitalization on October 16, 2020 (3)	
		(millions)			(millions)						(millions)	
Aquarion Water Company of New Hampshire, Inc. (4)												
Based upon Proxy Group of Seven Water Companies									351.1	(5)	\$	54.075 (6)
Proxy Group of Seven Water Companies												
American States Water Company	NYSE	36.847	\$	16.325	\$	601.530	\$	77.620	475.5	\%	\$	2,860.034
American Water Works Company, Inc.	NYSE	180.813		33.853		6,121.000		155.720	460.0		\$	28,156.180
California Water Service Group	NYSE	48.532		16.070		779.906		46.270	287.9		\$	2,245.585
Essential Utilities, Inc.	NYSE	220.759		17.580		3,880.860		41.850	238.1		\$	9,238.752
Middlesex Water Company	NASDAQ	17.434		18.572		323.792		66.880	360.1		\$	1,165.986
SJW Group	NYSE	28.457		31.275		889.984		61.650	197.1		\$	1,754.344
York Water Company	NASDAQ	13.015		10.310		134.185		45.230	438.7		\$	588.664
Average		77.979	\$	20.569	\$	1,818.751	\$	70.746	351.1	\%	\$	6,572.792

NA $=$ Not Available
Notes: (1) Column 3 / Column 1.
(2) Column 4 / Column 2
(3) Column 1^{*} Column 4.
(4) Company requested rate base multiplied by Company requested equity ratio
(5) The market-to-book ratio of Aquarion Water Company of New Hampshire, Inc. on October 16, 2020 is assumed to be equal to the market-to-book ratio of Proxy Group of Seven Water Companies on October 16, 2020 as appropriate.
(6) Column [3] multiplied by Column [5]

Docket No. DW 20-184

Exhibit 12

Docket No. DW 20-184
 Exhibit 12

Aquarion Water Company of New Hampshire, Inc
Derivation of the Flotation Cost Adjustment to the Cost of Common Equity

Aquarion Water Company of New Hampshire, Inc. Notes to Accompany the Derivation of the Flotation Cost Adjustment to the Cost of Common Equity

(1) Company-provided.
(2) Column 2 - Column 3.
(3) Column 2 - the sum of Columns 4 and 5.
(4) Column 1 * Column 2.
(5) Column1 * Column 6.
(6) Column 1 * the sum of Columns 4 and 5.
(7) (Column 7 - Column 8)/ Column 7.
(8) Using the average growth rate and average dividend yield on page 1 of Attachment DWD-3.
(9) Adjustment for flotation costs based on adjusting the average DCF constant growth cost rate in accordance with the following:
$K=\frac{D(1+0.5 g)}{P(1-F)}+g$,
where g is the growth factor and F is the percentage of flotation costs.
(10) Flotation cost adjustment of 0.04% equals the difference between the flotation adjusted average DCF cost rate of 9.24% and the unadjusted average DCF cost rate of 9.20% of the Utility Proxy Group.

Source of Information:
Company SEC filings

[^0]: 3
 Roger A. Morin, New Regulatory Finance, Public Utilities Reports, Inc., 2006, at 428-431. ("Morin")

[^1]: Eugene F. Brigham and Louis C. Gapenski, Financial Management - Theory and Practice, $4^{\text {th }}$ Ed. (The Dryden Press, 1985) at 256. ("Brigham and Gapenski")

[^2]: 5 Value Line Investment Survey, October 9, 2020.

[^3]: 7 Risk distinctions within S\&P's bond rating categories are recognized by a plus or minus, i.e., within the A category, an S\&P rating can be at A+, A, or A-. Similarly, risk distinctions for Moody's ratings are distinguished by numerical rating gradations, i.e., within the A category, a Moody's rating can be $\mathrm{A} 1, \mathrm{~A} 2$ and A 3 .

[^4]: 8 See Attachment DWD-3, page 1, Column 1.

[^5]: Autoregressive conditional heteroscedasticity. See "A New Approach for Estimating the Equity Risk Premium for Public Utilities", Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, Ph.D. The Journal of Regulatory Economics (December 2011), 40:261-278 and "Comparative Evaluation of the Predictive Risk Premium Model, the Discounted Cash Flow Model and the Capital Asset Pricing Model for Estimating the Cost of Common Equity", Richard A. Michelfelder, Ph.D, Pauline M. Ahern, Dylan W. D'Ascendis, and Frank J. Hanley, The Electricity Journal (May 2013), 84-89.
 www.nobelprize.org.

[^6]: $11 \quad$ Illustrated on Columns 1 and 2 of page 2 of Attachment DWD-4. Illustrated on Column 4 of page 2 of Attachment DWD-4. Annualized Return $=(1+\text { Monthly Return })^{\wedge} 12-1$
 See, Column 6 of page 2 of Attachment DWD-4.
 Blue Chip Financial Forecasts, June 1, 2020 at p. 14 and October 1, 2020 at p. 2.

[^7]: 16 As shown on Line No. 2 and explained in Note 2 of page 3 of Attachment DWD-4.

[^8]: 19 As explained in Note 1 on page 9 of Attachment DWD-4. SBBI-2020, at 10-22.

[^9]: ${ }^{24}$ See, Line No. 7 on page 8 of Attachment DWD-4.

[^10]: 25 As shown on Line No. 1 on page 12 of Attachment DWD-4.
 26 Derived on Line No. 3 of page 3 of Attachment DWD-4.
 $27 \quad$ As shown on page 7 of Attachment DWD-4.

[^11]: 28 Morin, at 175.
 29
 Eugene F. Fama and Kenneth R. French, "The Capital Asset Pricing Model: Theory and Evidence", Journal of Economic Perspectives, Vol. 18, No. 3, Summer 2004 at 33 ("Fama \& French"). http://pubs.aeaweb.org/doi/pdfplus/10.1257/0895330042162430

[^12]: $31 \quad$ Morin, at 190.
 $32 \quad$ Fama \& French, at 32.
 33 Ibid., at 33.

[^13]: 34 SBBI - 2020, at Appendix A-1 (1) through .A-1 (3) and Appendix A-7 (19) through A-7 (21).

[^14]: $35 \quad$ Blue Chip Financial Forecasts, June 1, 2020, at p. 14 and October 1, 2020, at p. 2.
 36 As demonstrated on Attachment DWD-7, page 3, note 2.
 37 Derived on page 5 of Attachment DWD-7.

[^15]: 38
 39
 Duff \& Phelps 2020 Valuation Handbook - U.S. Guide to Cost of Capital, Wiley 2018, at 4-1.
 Fama \& French, at 25-43.

[^16]: 42
 Richard A. Brealey and Stewart C. Myers, Principles of Corporate Finance, McGraw-Hill, Third Edition, 1988, at pp. 173, 198. Morin, at 523.
 Haim Levy \& Marshall Sarnat, Capital Investment and Financial Decisions, Prentice/Hall International, 1986, at 465.
 Bluefield, at 6.

[^17]: 46 Fama \& French, at 39.

[^18]: $47 \quad$ Dr. Richard A. Michelfelder, Pauline M. Ahern, Dylan W. D'Ascendis, The Impact of Decoupling on The Cost of Capital of Public Utilities, Energy Policy 130 (2019), at 311-319.
 The Brattle Group, The Impact of Revenue Decoupling on the Cost of Capital for Electric Utilities: An Empirical Investigation, Prepared for the Energy Foundation, March 20, 2014. Ibid., at 7 .

[^19]: 50 lbid., at 8.
 Michael J. Vilbert, Joseph B. Wharton, Shirley Zhang and James Hall, Effect on the Cost of Capital of Innovative Ratemaking that Relaxes the Linkage between Revenue and kWh Sales An Updated Empirical Investigation, November 2016. Ibid.

[^20]: 53 Morin, at p. 321.

[^21]: (14c); '10, (23c); '11, 10c. Next earnings report vestment plan available. due early November

[^22]: (A) Basic EPS. Excl. nonrecurring gain (loss):
 '11, 4c. Next earnings report due early Nov. $\begin{aligned} & \text { available. } \\ & \text { (C) Incl. intangible assets. In '19: } \$ 24.9 \text { mill., }\end{aligned}$ (B) Dividends historically paid in late Feb.,
 © 2020 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
 THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or elecctronic publication, sevvice or product.

[^23]: (A) Diluted egs. Excl. nonrec. gains: '12, 18c. outstanding in the Dec. period. Next earnings (C) In milions, adjusted for stock splits. Excl. gain from disc. operations: '12, 7¢;' '13, 9c; '14, 11c. Quarterly EPS do not add in '19 due to a large change in the number of shares | | |
 | :--- | :--- | :--- |
 | in early March, June, Sept., \& Dec. ■ Div'd. | bill./\$9.55 a share | in early March, June, Sept., \& Dec. - Div'd.

 reinvestment plan available (5% discount).
 © 2020 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's Sown, non-commercial, internal use. No part
 of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product.

[^24]: late October.

